Advertisement

Soils Under High- and Low-Cycle Loading - Experiments vs. Predictions by Constitutive Models

  • Torsten WichtmannEmail author
Conference paper
Part of the Springer Series in Geomechanics and Geoengineering book series (SSGG)

Abstract

The behaviour of soils and foundation structures under a cyclic loading with either a high or a low number of cycles is discussed. Regarding the high-cycle loading, the validation of a high-cycle accumulation (HCA) model is demonstrated based on successful recalculations of element tests, model tests on monopile foundations with different scales and a full-scale test on a gravity base foundation for offshore wind turbines. The well-documented settlements of a ship lock over about two decades could be reproduced with the HCA model as well. Regarding the low-cycle loading, two databases with numerous undrained cyclic triaxial tests performed on either a coarse-grained or a fine-grained soil are introduced. The data for sand is used to inspect three constitutive models with a focus to low-cycle loading.

References

  1. 1.
    Cudmani, R.: Statische, alternierende und dynamische Penetration in nichtbindige Böden. Ph.D. thesis, Publications of the Institute of Soil Mechanics and Rock Mechanics, University Karlsruhe, Issue No. 152 (2001)Google Scholar
  2. 2.
    Dafalias, Y.F., Manzari, M.: Simple plasticity sand model accounting for fabric change effects. J. Eng. Mech. 130(6), 622–634 (2004)CrossRefGoogle Scholar
  3. 3.
    Dafalias, Y.F., Manzari, M.: Sand plasticity model accounting for inherent fabric anisotropy. J. Eng. Mech. 130(11), 1319–1333 (2004)CrossRefGoogle Scholar
  4. 4.
    Fuentes, W.: Contributions in mechanical modelling of fill material. Ph.D. thesis. Publications of the Institute of Soil Mechanics and Rock Mechanics, Karlsruhe Institute of Technology, Issue No. 179 (2014)Google Scholar
  5. 5.
    Hartwig, U., Mayer, T.: Entwurfsaspekte bei Gründungen für Offshore-Windenergieanlagen. Bautechnik 89(3), 153–161 (2012)CrossRefGoogle Scholar
  6. 6.
    Karg, C., Francois, S., Haegeman, W., Degrande, G.: Elasto-plastic long-term behavior of granular soils: modeling and experimental validation. Soil Dyn. Earthq. Eng. 30(8), 635–646 (2010)CrossRefGoogle Scholar
  7. 7.
    Machaček, J., Wichtmann, T., Zachert, H., Triantafyllidis, T.: Long-term settlements of a ship lock: measurements vs. FE-prediction using a high cycle accumulation model. Comput. Geotech. 97(5), 222–232 (2018)CrossRefGoogle Scholar
  8. 8.
    Niemunis, A., Herle, I.: Hypoplastic model for cohesionless soils with elastic strain range. Mech. Cohesive-Frict. Mater. 2, 279–299 (1997)CrossRefGoogle Scholar
  9. 9.
    Niemunis, A., Wichtmann, T., Triantafyllidis, T.: A high-cycle accumulation model for sand. Comput. Geotech. 32(4), 245–263 (2005)CrossRefGoogle Scholar
  10. 10.
    Pasten, C., Shin, H., Santamarina, J.C.: Long-term foundation response to repetitive loading. J. Geotech. Geoenviron. Eng. 140(4), 04013036 (2014)CrossRefGoogle Scholar
  11. 11.
    Taşan, H.E., Rackwitz, F., Glasenapp, R.: Experimentelle Untersuchungen zum Verhalten von zyklisch horizontal belasteten Monopiles. Bautechnik 88(2), 102–112 (2011)CrossRefGoogle Scholar
  12. 12.
    Wichtmann T.: Soil behaviour under cyclic loading - experimental observations, constitutive description and applications. Habilitation thesis. Publications of the Institute of Soil Mechanics and Rock Mechanics, Karlsruhe Institute of Technology, Issue No. 181 (2016)Google Scholar
  13. 13.
    Wichtmann, T.: (2018). www.torsten-wichtmann.de
  14. 14.
    Wichtmann, T., Triantafyllidis, T.: An experimental data base for the development, calibration and verification of constitutive models for sand with focus to cyclic loading. Part I: Tests with monotonic loading and stress cycles. Acta Geotech. 11(4), 739–761 (2016)CrossRefGoogle Scholar
  15. 15.
    Wichtmann, T., Triantafyllidis, T.: An experimental data base for the development, calibration and verification of constitutive models for sand with focus to cyclic loading. Part II: tests with strain cycles and combined cyclic and monotonic loading. Acta Geotech. 11(4), 763–774 (2016)CrossRefGoogle Scholar
  16. 16.
    Wichtmann, T., Triantafyllidis, T.: Monotonic and cyclic tests on Kaolin - a database for the development, calibration and verification of constitutive models for cohesive soils with focus to cyclic loading. Acta Geotech. (2018).  https://doi.org/10.1007/s11440-017-0588-3CrossRefGoogle Scholar
  17. 17.
    Wichtmann, T., Niemunis, A., Triantafyllidis, T.: On the determination of a set of material constants for a high-cycle accumulation model for non-cohesive soils. Int. J. Numer. Anal Met. 34(4), 409–440 (2010)zbMATHGoogle Scholar
  18. 18.
    Wichtmann, T., Niemunis, A., Triantafyllidis, T.: Improved simplified calibration procedure for a high-cycle accumulation model. Soil Dyn. Earthq. Eng. 70(3), 118–132 (2015)CrossRefGoogle Scholar
  19. 19.
    von Wolffersdorff, P.-A.: A hypoplastic relation for granular materials with a predefined limit state surface. Mech. Cohesive-Frict. Mater. 1, 251–271 (1996)CrossRefGoogle Scholar
  20. 20.
    Zachert, H.: Zur Gebrauchstauglichkeit von Gründungen für Offshore-Windenergieanlagen. Ph.D. thesis. Publications of the Institute of Soil Mechanics and Rock Mechanics, Karlsruhe Institute of Technology, Issue No. 180 (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Bauhaus-Universität WeimarWeimarGermany

Personalised recommendations