Advertisement

The Biot Coefficient for a Low Permeability Geomaterial with a Heterogeneous Fabric

  • A. P. S. SelvaduraiEmail author
Conference paper
Part of the Springer Series in Geomechanics and Geoengineering book series (SSGG)

Abstract

The paper describes a research methodology that can be adopted for estimating the Biot coefficient for a low permeability rock that has a heterogeneous internal fabric. Experimental techniques that address the requirements for a representative volume element can be combined with theoretical developments for multiphasic elastic materials to develop bounds for the Biot coefficient. The theoretical developments are used to estimate the Biot coefficient for a heterogeneous argillaceous limestone.

Keywords

Poroelasticity Biot coefficient Stress partitioning 

Notes

Acknowledgements

The work described in this paper was supported by research grants awarded by the Natural Sciences and Engineering Research Council of Canada and the Nuclear Waste Management Organization of Ontario.

References

  1. 1.
    Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941)CrossRefGoogle Scholar
  2. 2.
    Selvadurai, A.P.S.: Mechanics of Poroelastic Media. Kluwer Academic Publishers, Dordrecht (1996)CrossRefGoogle Scholar
  3. 3.
    Selvadurai, A.P.S., Yue, Z.Q.: On the indentation of a poroelastic layer. Int. J. Num. Anal. Methods Geomech. 18, 161–175 (1994)CrossRefGoogle Scholar
  4. 4.
    Selvadurai, A.P.S.: The analytical method in geomechanics. Appl. Mech. Rev. 60, 87–106 (2007)CrossRefGoogle Scholar
  5. 5.
    Cheng, A.H.-D.: Poroelasticity. Springer, Berlin (2016)Google Scholar
  6. 6.
    Selvadurai, A.P.S., Shi, L.: Biot’s problem for a Biot material. Int. J. Eng. Sci. 97, 133–147 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Cowin, S.C.: Bone Mechanics Handbook. Taylor and Francis, New York (2001)Google Scholar
  8. 8.
    Pence, T.J.: On the formulation of boundary value problems with incompressible constituent constraints in finite deformation poroelasticity. Math. Model. Methods Appl. Sci. 35, 1756–1783 (2012)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Selvadurai, A.P.S., Suvorov, A.P.: Coupled hydro-mechanical effects in a poro-hyperelastic material. J. Mech. Phys. Solids 91, 311–333 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Suvorov, A.P., Selvadurai, A.P.S.: On poro-hyperelastic shear. J. Mech. Phys. Solids 96, 445–459 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Selvadurai, A.P.S., Suvorov, A.P.: On the inflation of poro-hyperelastic annuli. J. Mech. Phys. Solids 107, 229–252 (2017)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Selvadurai, A.P.S., Suvorov, A.P.: On the development of instabilities in an annulus and a shell composed of a poro-hyperelastic material (in preparation)Google Scholar
  13. 13.
    Terzaghi, K.: Die Berechnung der Durchlassigkeitsziffer des Tones aus Dem Verlauf der Hydrodynamischen Spannungserscheinungen. Akad Wissensch Wien Sitzungsber Mathnaturwissensch Klasse IIa 142, 125–138 (1923)Google Scholar
  14. 14.
    Selvadurai, A.P.S.: Geomechanical characterization of the Cobourg limestone. Technical report, Nuclear Waste Management Organization (2018)Google Scholar
  15. 15.
    Selvadurai, A.P.S., Letendre, A., Hekimi, B.: Axial flow hydraulic pulse testing of an argillaceous limestone. Environ. Earth Sci. 64, 2047–2058 (2011)CrossRefGoogle Scholar
  16. 16.
    Selvadurai, A.P.S., Jenner, L.: Radial flow permeability testing of an argillaceous limestone. Ground Water 51, 100–107 (2013)CrossRefGoogle Scholar
  17. 17.
    Selvadurai, A.P.S., Najari, M.: On the interpretation of hydraulic pulse tests on rock specimens. Adv. Water Resour. 53, 139–149 (2013)CrossRefGoogle Scholar
  18. 18.
    Selvadurai, A.P.S., Najari, M.: Laboratory-scale hydraulic pulse testing: influence of air fraction in cavity on estimation of permeability. Géotechnique 65, 126–134 (2015)CrossRefGoogle Scholar
  19. 19.
    Selvadurai, A.P.S., Najari, M.: The thermo-hydro-mechanical behaviour of the argillaceous Cobourg limestone. J. Geophys. Res. (Solid Earth) 122 (2017).  https://doi.org/10.1002/2016jb013744Google Scholar
  20. 20.
    Selvadurai, A.P.S., Głowacki, A.: Stress-induced permeability alterations in an argillaceous limestone. Rock Mech. Rock Eng. 50, 1079–1096 (2017)CrossRefGoogle Scholar
  21. 21.
    Hill, R.: The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. 65, 349–354 (1952)CrossRefGoogle Scholar
  22. 22.
    Hashin, Z., Shtrikman, S.: A variational approach to the elastic behavior of multiphase minerals. J. Mech. Phys. Solids 11, 127–140 (1963)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Selvadurai, A.P.S.: The Biot coefficient for a low permeability heterogeneous limestone. Continuum Mech. Thermodyn. (2018).  https://doi.org/10.1007/s00161-018-0653-7

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.McGill UniversityMontrealCanada

Personalised recommendations