Advertisement

Essential Concepts of Neohypoplasticity

  • Andrzej NiemunisEmail author
  • Carlos E. Grandas Tavera
Conference paper
Part of the Springer Series in Geomechanics and Geoengineering book series (SSGG)

Abstract

The neohypoplastic model [12] eliminates several shortcomings of the hypoplastic vW-HP model [17]. The most important improvements are presented here. The general form of the constitutive equation \(\dot{\sigma } = {\bar{\mathsf {E}}}:(\dot{\varepsilon } + \mathbf{m}Y \Vert \dot{\varepsilon }\Vert )\) is slightly modified by two additional terms in brackets. The functions \(\mathsf{E}(\sigma ,e), \mathbf{m}(\sigma ,e)\) and \(Y(\sigma ,e)\) are completely reformulated in order to deal with numerous problems of the old model: perpetuum mobile of the second kind, too small dilatancy during triaxial tension paths, poor predictions of peak stress and inconsistent behaviour of the model at the upper density limit. A new state variable \(\mathbf{z}\) similar to the one from the Sanisand model [3] is introduced. The hitherto used state variables: the stress and the void ratio are preserved, of course. Moreover, a new kind of nonlinearity is proposed: the rotation of the deviatoric stress response. The problems connected to the extension intergranular-strain extension are not discussed here.

References

  1. 1.
    Bauer, E.: Zum mechanischen Verhalten granularer Stoffe unter vorwiegend öodometrischer Beanspruchung. Ph.D. thesis, Institut für Boden und Felsmechanik der Universität Karlsruhe (TH), Heft, Nr. 130 (1992)Google Scholar
  2. 2.
    Di Benedetto, H., Tatsuoka, F., Ishihara, M.: Time dependent shear deformation characteristics of sand and their constitutive modelling. Soils Found. 42(2), 1–22 (2001)Google Scholar
  3. 3.
    Dafalias, Y.F., Manzari, M.T.: Simple plasticity sand model accounting for fabric change effects. J. Eng. Mech. 130, 22–34 (2004)Google Scholar
  4. 4.
    Dafalias, Y.F.: Overview of constitutive models used in VELACS. In: Arulandan, K., Scott, R. (eds.) Verification of Numerical Procedures for the Analysis of Soil Liquefaction Problems, vol. 2, pp. 1293–1304. Balkema, Proceedings of the International Conference in Davis, California (1994)Google Scholar
  5. 5.
    Espino, E.: Quasi-statische Untersuchungen zur Elastizitt von Sand als Grundlage eines neuen hypoplastischen Stoffmodells. Masters thesis, Institut für Boden- und Felsmechanik, Karlsruher Institut für Technologie, Mai (2014)Google Scholar
  6. 6.
    Graham, J., Houlsby, G.T.: Anisotropic elsticity of a natural clay. Géotechnique 33(2), 165–180 (1983)CrossRefGoogle Scholar
  7. 7.
    Herle, I.: Hypoplastizität und Granulometrie einfacher Korngerüste. Ph.D. thesis, Institut füur Boden- und Felsmechanik der Universität Karlsruhe, Nr. 142 (1997)Google Scholar
  8. 8.
    Hunt, M.L., Zenit, R., Campbell, C.S., Brennen, C.E.: Revisiting the 1954 suspension experiments of R.A. Bagnold. J. Fluid Mech. 452, 1–24 (2002)CrossRefGoogle Scholar
  9. 9.
    Johnson, A.: A model for grain flow and debris flow. Technical report 96-728, U.S. Department of the Interior U.S. Geological Survey, Denver, Colorado (1996)Google Scholar
  10. 10.
    Knittel, L.J.: Fortgesetzte quasi-statische Untersuchungen zur Elastizitt von Sand als Grundlage eines neuen hypoplastischen Stoffmodells. Masters thesis, Institut für Boden- und Felsmechanik, Karlsruher Institut fr Technologie, September 2014Google Scholar
  11. 11.
    Matsuoka, H., Nakai, T.: Stress-strain relationship of soil base on the SMP constitutive equations of soils. In: Murayama, S., Schofield, A.N. (eds.) Proceedings of the 9th International Conference On Soil Mechanics and Foundation Engineering, Speciality Session 9. Japanese Society of Soil Mechanics and Foundation Engineering, IX ICSMFE, Tokyo (1977)Google Scholar
  12. 12.
    Niemunis, A., Grandas-Tavera, C.E., Wichtmann, T.: Peak stress obliquity in drained and undrained sands. Simulations with neohypoplasticity. In: Triantafyllidis, Th. (ed.) Holistic Simulation of Geotechnical Installation Processes. Numerical and Physical Modelling, vol. 80, pp. 85–114. Springer, Heidelberg (2016)Google Scholar
  13. 13.
    Osinov, V.A., Chisopoulos, S., Grandas-Tavera, C.E.: Vibration-induced stress changes in saturated soil: a high cyclic problem. In: Triantafyllidis, Th. (ed.) Holistic Simulation of Geotechnical Installation Processes. Numerical and Physical Modelling, pp. 69–84. Springer, Heidelberg (2016)Google Scholar
  14. 14.
    Chisopoulos, S., Osinov, V.A., Triantafyllidis, T.: Dynamic problem for the deformation of sturated soil in the vicinity of a vibratin pile toe. In: Triantafyllidis, Th. (ed.) Holistic Simulation of Geotechnical Installation Processes. Numerical and Physical Modelling, pp. 53–68. Springer, Heidelberg (2016)Google Scholar
  15. 15.
    Taiebat, M., Dafalias, Y.F.: SANISAND: simple anisotropic sand plasticity model. Int. J. Numer. Anal. Methods Geomech. 32(8), 915–948 (2008)CrossRefGoogle Scholar
  16. 16.
    Vermeer, P.: A five-constant model unifying well established concepts. In: Constitutive Relations for Soils, pp. 175–198. Balkema, Holland, Proceedings of the International Workshop in Grenoble (1982)Google Scholar
  17. 17.
    von Wolffersdorf, P.-A.: Verformungsprognosen für Stützkonstruktionen. Ph.D. thesis, Institut für Boden- und Felsmechanik der Universität Karlsruhe, Habilitationschrift, Heft Nr. 141 (1997)Google Scholar
  18. 18.
    von Wolffersdorf, P.-A.: Eine neue Version des erweiterten hypoplastischen Stoffgesetzes. Mech. Cohesive-Frictional Mater. 1, 251–271 (1993)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Soil Mechanics and Rock Mechanics, Karlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations