Concepts of Barodesy

  • Gertraud MedicusEmail author
  • Wolfgang Fellin
  • Dimitrios Kolymbas
  • Fabian Schranz
Conference paper
Part of the Springer Series in Geomechanics and Geoengineering book series (SSGG)


Barodesy is a frame for constitutive modeling of soils based on their asymptotic properties. This frame allows to derive the constitutive relation by reasoning on general properties of granular materials. The so obtained constitutive relation is a single tensorial equation that expresses the evolution of stress in dependence of the deformation. Common concepts of soil mechanics, such as critical states, barotropy (i.e. the dependence of stiffness and strength on the stress level), pyknotropy (i.e. the dependence of stiffness and strength on density) and a stress-dilatancy relation are comprised in the presented model.



The first author is supported by a research grant of the Austrian Science Fund (FWF): P 28934-N32


  1. 1.
    Bauer, E.: Calibration of a comprehensive hypoplastic model for granular materials. Soils Found. 36(1), 13–26 (1996)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bauer, E.: The critical state concept in hypopasticity. In: Yuan, J.X. (ed.), Computer Methods and Advances in Geomechanics, pp. 691–696. Balkema (1997)Google Scholar
  3. 3.
    Chu, J., Lo, S.C.R.: Asymptotic behaviour of a granular soil in strain path testing. Géotechnique 44, 65–82 (1994)CrossRefGoogle Scholar
  4. 4.
    Fellin, W.: Extension to barodesy to model void ratio and stress dependency of the K0 value. Acta Geotech. 8(5), 561–565 (2013)CrossRefGoogle Scholar
  5. 5.
    Fellin, W., Ostermann, A.: The critical state behaviour of barodesy compared with the Matsuoka-Nakai failure criterion. Int. J. Numer. Anal. Methods Geomech. 37, 299–308 (2011)CrossRefGoogle Scholar
  6. 6.
    Goldscheider, M.: Grenzbedingung und Fließregel von Sand. Mech. Res. Comm. 3, 463–468 (1976)CrossRefGoogle Scholar
  7. 7.
    Gudehus, G.: A comprehensive constitutive equation for granular materials. Soils Found. 36(1), 1–12 (1996)CrossRefGoogle Scholar
  8. 8.
    Henkel, D.: The effect of overconsolidation on the behaviour of clays during shear. Géotechnique 6, 139–150 (1956)CrossRefGoogle Scholar
  9. 9.
    Herle, I., Kolymbas, D.: Hypoplasticity for soils with low friction angles. Comput. Geotech. 31, 365–373 (2004)CrossRefGoogle Scholar
  10. 10.
    Kolymbas, D.: A rate-dependent constitutive equation for soils. Mech. Res. Comm. 4, 367–372 (1977)CrossRefGoogle Scholar
  11. 11.
    Kolymbas D.: A generalised hypoelastic cosntitutive law. In: Proceedings of XI International Conference on Soil Mechanics and Foundation Engineering, vol. 5, p. 2626, Balkelma, San Francisco (1985)Google Scholar
  12. 12.
    Kolymbas, D.: The misery of constitutive modelling. In: Kolymbas, D. (ed.) Constitutive Modelling of Granular Materials, pp. 11–24. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  13. 13.
    Kolymbas, D.: Introduction to barodesy. Géotechnique 65, 52–65 (2015)CrossRefGoogle Scholar
  14. 14.
    Lade P.V.: Effects of consolidation stress state on normally consolidated clay. In: Rathmayer, H. (ed.), Proceedings of NGM-2000: XIII Nordiska Geoteknikermötet, Helsinki, Finland, Building Information Ltd., (2000)Google Scholar
  15. 15.
    Mašín, D.: Hypoplastic Cam-clay model. Géotechnique 62, 549–553 (2005)CrossRefGoogle Scholar
  16. 16.
    Mašín, D.: Asymptotic behaviour of granular materials. Granular Matter 14(6), 759–774 (2012)CrossRefGoogle Scholar
  17. 17.
    Mašín, D.: Clay hypoplasticity with explicitly defined asymptotic states. Acta Geotech. 8, 481–496 (2013). Springer, Berlin HeidelbergCrossRefGoogle Scholar
  18. 18.
    Medicus, G., Kolymbas, D., Fellin, W.: Proportional stress and strain paths in barodesy. Int. J. Numer. Anal. Methods Geomech. 40, 509–522 (2016)CrossRefGoogle Scholar
  19. 19.
    Medicus, G., Fellin, W.: An improved version of barodesy for clay. Acta Geotech. 12, 365–376 (2017)CrossRefGoogle Scholar
  20. 20.
    Niemunis A.: Extended hypoplastic models for soils. Heft 34, Schriftenreihe des Inst. f. Grundbau u. Bodenmechanik der Ruhr-Universitaet Bochum (2003)Google Scholar
  21. 21.
    Niemunis, A., Herle, I.: Hypoplastic model for cohesionless soils with elastic strain range. Mech. Cohesive-Frict. Mater. 2(4), 279–299 (1997)CrossRefGoogle Scholar
  22. 22.
    Roscoe K., Bassett R., Cole E.: Principal axes observed during simple shear of a sand. In: Proceedings of the 4th European Conference on Soil Mechanics and Geotechnical Engineering, vol. 1, pp. 231–237 (1967)Google Scholar
  23. 23.
    Schranz, F., Fellin, W.: Stability of infinite slopes investigated with elastoplasticity and hypoplasticity. Geotechnik 39(3), 2190–6653 (2016)CrossRefGoogle Scholar
  24. 24.
    Thornton, C., Zhang, L.: A numerical examination of shear banding and simple shear non-coaxial flow rules. Philos. Mag. 86, 3425–3452 (2006)CrossRefGoogle Scholar
  25. 25.
    Topolnicki M.: Observed stress-strain behaviour of remolded saturated clay and examination of two constitutive models. Veröffentlichungen des Instituts für Bodenmechanik und Felsmechanik der Universität Fridericiana in Karlsruhe (1987)Google Scholar
  26. 26.
    Truesdell C., Noll W.: The non-linear field theories of mechanics. In: Encyclopedia of Physics, vol. IIIc. Springer (1965)Google Scholar
  27. 27.
    von Wolffersdorff, P.A.: A hypoplastic relation for granular materials with a predefined limit state surface. Mech. Cohesive-Frict. Mater. 1(1), 251–271 (1996)CrossRefGoogle Scholar
  28. 28.
    Wu, W.: Hypoplastizität als mathematisches Modell zum mechanischen Verhalten granularer Stoffe. Veröffentlichungen des Instituts für Bodenmechanik und Felsmechanik der Universität Fridericiana in Karlsruhe, Heft 129 (1992)Google Scholar
  29. 29.
    Wu, W., Bauer, E., Kolymbas, D.: Hypoplastic constitutive model with critical state for granular materials. Mech. Mater. 23, 45–69 (1996)CrossRefGoogle Scholar
  30. 30.
    Yu, H.S.: Plasticity and Geotechnics. Springer, US (2006)zbMATHGoogle Scholar
  31. 31.
    Zhang L.: The behaviour of granular material in pure shear, direct shear and simple shear. Aston University (2003)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Gertraud Medicus
    • 1
    Email author
  • Wolfgang Fellin
    • 1
  • Dimitrios Kolymbas
    • 1
  • Fabian Schranz
    • 1
  1. 1.Geotechnik und TunnelbauUniversität InnsbruckInnsbruckAustria

Personalised recommendations