Information Exchange Diagrams for Information Systems and Artificial Intelligence in the Context of Decision Support Systems

  • Sebastian JahnenEmail author
  • Stefan Pickl
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11472)


Nowadays we face the Information Age and nothing evolves more rapid than the evolution of Information Sciences (IS). Related to building networks between different Communities of Interests (COI) with the help of Information Systems, the major challenge is sharing information and giving information at the right place, in the right time, to the right COI. Basis for successful implementations in information systems and further basis for decision support in artificial intelligence (AI) systems are information exchange diagrams. The present paper deals with an automatic extraction from information exchanges in operational process models. For this purpose, a modelling method was specific designed and used. Based on graph theory approaches the modelling method gives the possibility with a specially developed software to extract the information exchanges automatically and produce needed diagrams. Our approach is a new concept in the field of information systems and AI in the context of decision support systems. We present theoretical foundations and first experimental designs.


Information exchange AI Information system 


  1. 1.
    Grice, H.P.: Logic and conversation. In: Cole, P., Morgan, J.L. (eds.) Syntax and Semantics. Speech Acts, vol. 3, pp. 41–58. Academic Press, New York (1975)Google Scholar
  2. 2.
    Williams, C.C.: Trust diffusion: the effect of interpersonal trust on structure, function, and organizational transparency. Bus. Soc. 44(3), 357–368 (2005)CrossRefGoogle Scholar
  3. 3.
    Matthes, D.: Enterprise Architecture Frameworks Kompendium: Über 50 Rahmenwerke für das IT-Management, 1st edn. Springer, Heidelberg (2011). Scholar
  4. 4.
    Power, D.J.: Decision Support Systems: Concepts and Resources for Managers, 1st edn. Greenwood Publishing Group, London (2002)Google Scholar
  5. 5.
    Drucker, P.F.: The next information revolution. Forbes 162(4), 47–54 (1998)Google Scholar
  6. 6.
    Shim, J.P., Warkentin, M., Courtney, J.F., Power, D.J., Sharda, R., Carlsson, C.: Past, present, and future of decision support technology. Decis. Support Syst. 33(2), 111–126 (2002)CrossRefGoogle Scholar
  7. 7.
    Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 1st edn. Pearson Education Limited, Malaysia (2016)Google Scholar
  8. 8.
    Michalski, R.S., Carbonell, J.G., Mitchell, T.M. (eds.): Machine Learning: An Artificial Intelligence Approach, 1st edn. Springer, Heidelberg (1983). Scholar
  9. 9.
    Keller, G., Scheer, A.W., Nüttgens, M.: Semantische Prozeßmodellierung auf der Grundlage “Ereignisgesteuerter Prozeßketten (EPK)”. In: Scheer, A.-W. (Hrsg.): Veroeffentlichungen des Instituts fuer Wirtschaftsinformatik, Heft 89, University of Saarland, Saarbruecken (1992)Google Scholar
  10. 10.
    White, S.A.: Introduction to BPMN (2004). Accessed 17 Aug 2018
  11. 11.
    Gappmaier, M., Gappmaier, C.: Alles Prozess?!: Einfach wirksame Prozessoptimierung in jeder Situation mit der Bildkartenmethode (BKM), 3rd edn. Books on Demand, Nordstedt (2011)Google Scholar
  12. 12.
    van der Aalst, W.M.P.: Making work flow: on the application of petri nets to business process management. In: Esparza, J., Lakos, C. (eds.) ICATPN 2002. LNCS, vol. 2360, pp. 1–22. Springer, Heidelberg (2002). Scholar
  13. 13.
    Brandes, U., Eiglsperger, M., Lerner, J., Pich, C.: Graph markup language (GraphML). In: Tamassia, R. (ed.) Handbook of Graph Drawing Visualization, pp. 517–541. Taylor & Francis, London (2013)Google Scholar
  14. 14.
    Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F.: Extensible markup language (XML). World Wide Web J. 2(4), 27–66 (1997)Google Scholar
  15. 15.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Hodicky, J., Frantis, P.: Decision support system for a commander at the operational level. In: KEOD 2009, Proceedings of the 1st International Conference on Knowledge Engineering and Ontology Development, pp. 359–362 (2009)Google Scholar
  17. 17.
    Stodola, P., Mazal, J.: Tactical decision support system to aid commanders in their decision-making. In: Hodicky, J. (ed.) MESAS 2016. LNCS, vol. 9991, pp. 396–406. Springer, Cham (2016). Scholar
  18. 18.
    Mata, J., et al.: Artificial intelligence (AI) methods in optical networks: a comprehensive survey. Opt. Switch. Netw. 28, 43–57 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Fakultät für InformatikUniversität der BundeswehrNeubibergGermany

Personalised recommendations