Advertisement

Trajectory Planning for Aerial Vehicles in the Area Coverage Problem with Nearby Obstacles

  • Jakub Marek
  • Petr VáňaEmail author
  • Jan Faigl
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11472)

Abstract

In this paper, we address the coverage path planning with curvature-constrained paths for a fixed-wing aerial vehicle. The studied problem is to provide a cost-efficient solution to cover a given area by the vehicle sensor from the specified altitude to provide a sufficient level of details in the captured snapshots of the area. In particular, we focus on scenarios where the area to be covered is surrounded by nearby obstacles such as trees or buildings, and the vehicle has to avoid collisions with the obstacles but maximizes the area coverage. We propose an extension of the existing coverage planning algorithm to determine a shortest collision-free path that is accompanied by Dubins Airplane model to satisfy the motion constraints of the vehicle. The reported results support the feasibility of the proposed approach to avoid nearby obstacles by optimal adjustments of the vehicle altitude while the requested complete coverage is satisfied. If such a solution is not found because of too close obstacles, a feasible solution maximizing the coverage is provided.

Notes

Acknowledgement

This work has been supported by the Czech Science Foundation (GAČR) under research Project No. 16-24206S and Project No. 19-20238S.

References

  1. 1.
    Acar, E.U., Choset, H., Rizzi, A.A., Atkar, P.N., Hull, D.: Morse decompositions for coverage tasks. Int. J. Robot. Res. 21(4), 331–344 (2002).  https://doi.org/10.1177/027836402320556359CrossRefGoogle Scholar
  2. 2.
    Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J.: The Traveling Salesman Problem: A Computational Study. Princeton University Press, Princeton (2006)Google Scholar
  3. 3.
    Atkar, P.N., Conner, D.C., Greenfield, A., Choset, H., Rizzi, A.A.: Hierarchical segmentation of piecewise pseudoextruded surfaces for uniform coverage. IEEE Trans. Autom. Sci. Eng. 6(1), 107–120 (2009).  https://doi.org/10.1109/TASE.2008.916768CrossRefGoogle Scholar
  4. 4.
    Cao, Z.L., Huang, Y., Hall, E.L.: Region filling operations with random obstacle avoidance for mobile robots. J. Field Robot. 5(2), 87–102 (1988).  https://doi.org/10.1002/rob.4620050202CrossRefGoogle Scholar
  5. 5.
    Choset, H.: Coverage of known spaces: the boustrophedon cellular decomposition. Auton. Robots 9(3), 247–253 (2000).  https://doi.org/10.1023/A:1008958800904CrossRefGoogle Scholar
  6. 6.
    Choset, H.: Coverage for robotics-a survey of recent results. Ann. Math. Artif. Intell. 31(1–4), 113–126 (2001).  https://doi.org/10.1023/A:1016639210559CrossRefGoogle Scholar
  7. 7.
    Dubins, L.E.: On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents. Am. J. Math. 79(3), 497–516 (1957).  https://doi.org/10.2307/2372560MathSciNetCrossRefGoogle Scholar
  8. 8.
    Gage, D.W.: Randomized search strategies with imperfect sensors. In: Mobile Robots VIII, vol. 2058, pp. 270–280. International Society for Optics and Photonics (1994).  https://doi.org/10.1117/12.167503
  9. 9.
    Galceran, E., Carreras, M.: A survey on coverage path planning for robotics. Robot. Auton. Syst. 61(12), 1258–1276 (2013).  https://doi.org/10.1016/j.robot.2013.09.004CrossRefGoogle Scholar
  10. 10.
    Helsgaun, K.: LKH solver 2.0.9. http://www.akira.ruc.dk/~keld/research/LKH/. Accessed 1 Aug 2018
  11. 11.
    Hert, S., Lumelsky, V.: Polygon area decomposition for multiple-robot workspace division. Int. J. Comput. Geom. Appl. 8(04), 437–466 (1998).  https://doi.org/10.1142/S0218195998000230MathSciNetCrossRefGoogle Scholar
  12. 12.
    Latombe, J.C.: Robot Motion Planning, vol. 124. Springer, Boston (2012).  https://doi.org/10.1007/978-1-4615-4022-9CrossRefGoogle Scholar
  13. 13.
    Luo, C., Yang, S.X.: A real-time cooperative sweeping strategy for multiple cleaning robots. In: International Symposium on Intelligent Control, pp. 660–665. IEEE (2002).  https://doi.org/10.1109/ISIC.2002.1157841
  14. 14.
    Maza, I., Ollero, A.: Multiple UAV cooperative searching operation using polygon area decomposition and efficient coverage algorithms. In: Alami, R., Chatila, R., Asama, H. (eds.) Distributed Autonomous Robotic Systems 6, pp. 221–230. Springer, Tokyo (2007).  https://doi.org/10.1007/978-4-431-35873-2_22CrossRefGoogle Scholar
  15. 15.
    Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: IEEE International Conference on Robotics and Automation (ICRA), vol. 2, pp. 116–121. IEEE (1985).  https://doi.org/10.1109/ROBOT.1985.1087316
  16. 16.
    Noon, C.E., Bean, J.C.: A lagrangian based approach for the asymmetric generalized traveling salesman problem. Oper. Res. 39(4), 623–632 (1991).  https://doi.org/10.1287/opre.39.4.623MathSciNetCrossRefGoogle Scholar
  17. 17.
    Oh, J.S., Choi, Y.H., Park, J.B., Zheng, Y.F.: Complete coverage navigation of cleaning robots using triangular-cell-based map. IEEE Trans. Ind. Electron. 51(3), 718–726 (2004).  https://doi.org/10.1109/TIE.2004.825197CrossRefGoogle Scholar
  18. 18.
    Owen, M., Beard, R.W., McLain, T.W.: Implementing dubins airplane paths on fixed-wing UAVs*. In: Valavanis, K.P., Vachtsevanos, G.J. (eds.) Handbook of Unmanned Aerial Vehicles, pp. 1677–1701. Springer, Dordrecht (2015).  https://doi.org/10.1007/978-90-481-9707-1_120CrossRefGoogle Scholar
  19. 19.
    Perez-Imaz, H.I., Rezeck, P.A., Macharet, D.G., Campos, M.F.: Multi-robot 3D coverage path planning for first responders teams. In: IEEE International Conference on Automation Science and Engineering (CASE), pp. 1374–1379 (2016).  https://doi.org/10.1109/COASE.2016.7743569
  20. 20.
    Siebert, S., Teizer, J.: Mobile 3D mapping for surveying earthwork projects using an unmanned aerial vehicle (UAV) system. Autom. Constr. 41, 1–14 (2014).  https://doi.org/10.1016/j.autcon.2014.01.004CrossRefGoogle Scholar
  21. 21.
    Wong, S.C., MacDonald, B.A.: A topological coverage algorithm for mobile robots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 2, pp. 1685–1690. IEEE (2003).  https://doi.org/10.1109/IROS.2003.1248886
  22. 22.
    Xu, A., Viriyasuthee, C., Rekleitis, I.: Efficient complete coverage of a known arbitrary environment with applications to aerial operations. Auton. Robots 36(4), 365–381 (2014).  https://doi.org/10.1007/s10514-013-9364-xCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Electrical EngineeringCzech Technical University in PraguePragueCzech Republic

Personalised recommendations