Advertisement

Modeling Proprioceptive Sensing for Locomotion Control of Hexapod Walking Robot in Robotic Simulator

  • Minh Thao Nguyenová
  • Petr ČížekEmail author
  • Jan Faigl
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11472)

Abstract

Proprioceptive sensing encompasses the state of the robot given by its overall posture, forces, and torques acting on its body. It is an important source of information, especially for multi-legged walking robots because it enables efficient locomotion control that adapts to morphological and environmental changes. In this work, we focus on enhancing a simplified model of the multi-legged robot employed in a realistic robotic simulator to provide high-fidelity proprioceptive sensor signals. The proposed model enhancements are based on parameter identification and static and dynamic modeling of the robot. The enhanced model enables the V-REP robotic simulator to be used in real-world deployments of multi-legged robots. The performance of the developed simulation has been verified in the parameter search of dynamic locomotion gait to optimize the locomotion speed according to the limited maximal torques and self-collision free execution.

Notes

Acknowledgement

This work has been supported by the Czech Science Foundation (GAČR) under research Project No. 18-18858S.

References

  1. 1.
    Belter, D., Labecki, P., Skrzypczynski, P.: Adaptive motion planning for autonomous rough terrain traversal with a walking robot. J. Field Robot. 33(3), 337–370 (2016).  https://doi.org/10.1002/rob.21610CrossRefGoogle Scholar
  2. 2.
    Čížek, P., Masri, D., Faigl, J.: Foothold placement planning with a hexapod crawling robot. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4096–4101 (2017). https://doi.org/10.1109/IROS.2017.8206267
  3. 3.
    Collective of authors: Vortex Simulation Software. https://www.cm-labs.com/. Accessed 30 July 2018
  4. 4.
    Erez, T., Tassa, Y., Todorov, E.: Simulation tools for model-based robotics: comparison of bullet, havok, mujoco, ode and physx. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 4397–4404 (2015). https://doi.org/10.1109/ICRA.2015.7139807
  5. 5.
    Coumans, E., et al.: Bullet Physics Library. http://bulletphysics.org/wordpress/. Accessed 30 July 2018
  6. 6.
    Freese, M., Singh, S., Ozaki, F., Matsuhira, N.: Virtual robot experimentation platform V-REP: a versatile 3D robot simulator. In: Ando, N., Balakirsky, S., Hemker, T., Reggiani, M., von Stryk, O. (eds.) SIMPAR 2010. LNCS (LNAI), vol. 6472, pp. 51–62. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-17319-6_8CrossRefGoogle Scholar
  7. 7.
    Gao, H., et al.: A real-time, high fidelity dynamic simulation platform for hexapod robots on soft terrain. Simul. Model. Pract. Theor. 68, 125–145 (2016).  https://doi.org/10.1016/j.simpat.2016.08.004CrossRefGoogle Scholar
  8. 8.
    Jerez, J., Suero, A., et al.: Newton Dynamics. http://newtondynamics.com/forum/newton.php. Accessed 30 July 2018
  9. 9.
    Rohmer, E., Singh, S.P., Freese, M.: V-REP: a versatile and scalable robot simulation framework. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1321–1326 (2013). https://doi.org/10.1109/IROS.2013.6696520
  10. 10.
    Roy, S.S., Pratihar, D.K.: Dynamic modeling, stability and energy consumption analysis of a realistic six-legged walking robot. Robot. Comput. Integr. Manuf. 29(2), 400–416 (2013).  https://doi.org/10.1016/j.rcim.2012.09.010CrossRefGoogle Scholar
  11. 11.
    Smith, L.R., et al.: Open Dynamics Engine. http://www.ode.org/. Accessed 30 July 2018
  12. 12.
    Soyguder, S., Alli, H.: Kinematic and dynamic analysis of a hexapod walking running-bounding-gaits robot and control actions. Comput. Electr. Eng. 38(2), 444–458 (2012).  https://doi.org/10.1016/j.compeleceng.2011.10.008CrossRefGoogle Scholar
  13. 13.
    Spis, M., Matecki, A., Maik, P., Kurzawa, A., Kopicki, M., Belter, D.: Optimized and reconfigurable environment for simulation of legged robots. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds.) ICA 2017. AISC, vol. 550, pp. 290–299. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-54042-9_26CrossRefGoogle Scholar
  14. 14.
    Szadkowski, R.J., Čížek, P., Faigl, J.: Learning central pattern generator network with back-propagation algorithm. In: Proceedings Information Technologies - Applications and Theory ITAT 2018, pp. 116–123 (2018)Google Scholar
  15. 15.
    Wensing, P.M., Wang, A., Seok, S., Otten, D., Lang, J., Kim, S.: Proprioceptive actuator design in the MIT cheetah: impact mitigation and high-bandwidth physical interaction for dynamic legged robots. IEEE Trans. Robot. 33(3), 509–522 (2017).  https://doi.org/10.1109/TRO.2016.2640183CrossRefGoogle Scholar
  16. 16.
    Zaratti, M., Fratarcangeli, M., Iocchi, L.: A 3D simulator of multiple legged robots based on USARSim. In: Lakemeyer, G., Sklar, E., Sorrenti, D.G., Takahashi, T. (eds.) RoboCup 2006. LNCS (LNAI), vol. 4434, pp. 13–24. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-74024-7_2CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Electrical EngineeringCzech Technical University in PraguePragueCzech Republic

Personalised recommendations