Advertisement

Information Gathering Planning with Hermite Spline Motion Primitives for Aerial Vehicles with Limited Time of Flight

  • Alexander DubeňEmail author
  • Robert Pěnička
  • Martin Saska
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11472)

Abstract

This paper focuses on motion planning for information gathering by Unmanned Aerial Vehicle (UAV) solved as Orienteering Problem (OP). The considered OP stands to find a path over subset of given target locations, each with associated reward, such that the collected reward is maximized within a limited time of flight. To fully utilize the motion range of the UAV, Hermite splines motion primitives are used to generate smooth trajectories. The minimal time of flight estimate for a given Hermite spline is calculated using known motion model of the UAV with limited maximum velocity and acceleration. The proposed Orienteering Problem with Hermite splines is introduced as Hermite Orienteering Problem (HOP) and its solution is based on Random Variable Neighborhood Search algorithm (RVNS). The proposed RVNS for HOP combines random combinatorial state space exploration and local continuous optimization for maximizing the collected reward. This approach was compared with state of the art solutions to the OP motivated by UAV applications and showed to be superior as the resulting trajectories reached better final rewards in all testing cases. The proposed method has been also successfully verified on a real UAV in information gathering task.

Keywords

Orienteering Problem UAV Surveillance Information gathering Reconnaissance Unmanned Aerial Vehicle Hermite spline 3D trajectory generation 

Notes

Acknowledgment

The presented work has been supported by the Czech Science Foundation (GAČR) under research project No. 17-16900Y and by OP VVV MEYS funded project CZ.02.1.01/0.0/0.0/16_019/0000765 “Research Center for Informatics”. Access to computing and storage facilities of the National Grid Infrastructure MetaCentrum, provided under the programme CESNET LM2015042, is greatly appreciated. The support of the Grant Agency of the Czech Technical University in Prague under grant No. SGS17/187/OHK3/3T/13 is also gratefully acknowledged.

References

  1. 1.
    Metacentrum by cesnet. https://metavo.metacentrum.cz. Accessed 1 July 2018
  2. 2.
    Alena, O., Niels, A., James, C., Bruce, G., Erwin, P.: Optimization approaches for civil applications of unmanned aerial vehicles (UAVs) or aerial drones: a survey. Networks 72(4), 411–458 (2018)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J.: The Traveling Salesman Problem: A Computational Study. Princeton University Press, Princeton (2006)Google Scholar
  4. 4.
    Baca, T., Loianno, G., Saska, M.: Embedded model predictive control of unmanned micro aerial vehicles. In: International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 992–997, August 2016Google Scholar
  5. 5.
    Balas, E., Toth, P.: Branch and bound methods for the traveling salesman problem. Technical report, Carnegie-Mellon University, January 1983Google Scholar
  6. 6.
    Boonporm, P.: Online geometric path planning algorithm of autonomous mobile robot in partially-known environment. Rom. Rev. Precis. Mech. Opt. Mechatron. 185–188 (2011)Google Scholar
  7. 7.
    Canis, B.: Unmanned Aircraft Systems (UAS): Commercial Outlook for a New Industry. Congressional Research Service Washington (2015)Google Scholar
  8. 8.
    Chao, I.M., Golden, B.L., Wasil, E.A.: A fast and effective heuristic for the orienteering problem. Eur. J. Oper. Res. 88(3), 475–489 (1996)CrossRefGoogle Scholar
  9. 9.
    Choi, J., Curry, R., Elkaim, G.: Path planning based on Bézier curve for autonomous ground vehicles. In: Advances in Electrical and Electronics Engineering - IAENG Special Edition of the World Congress on Engineering and Computer Science 2008, pp. 158–166 (2008)Google Scholar
  10. 10.
    Deng, C., Wang, S., Huang, Z., Tan, Z., Liu, J.: Unmanned aerial vehicles for power line inspection: a cooperative way in platforms and communications. J. Commun. 9(9), 687–692 (2014)CrossRefGoogle Scholar
  11. 11.
    Doherty, P., Rudol, P.: A UAV search and rescue scenario with human body detection and geolocalization. In: Orgun, M.A., Thornton, J. (eds.) AI 2007. LNCS (LNAI), vol. 4830, pp. 1–13. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-76928-6_1CrossRefGoogle Scholar
  12. 12.
    Dubins, L.E.: On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents. Am. J. Math. 79(3), 497–516 (1957)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Faigl, J., Pěnička, R., Best, G.: Self-organizing map-based solution for the orienteering problem with neighborhoods. In: IEEE International Conference on Systems, Man, and Cybernetics, pp. 1315–1321, October 2016Google Scholar
  14. 14.
    Faigl, J., Váňa, P.: Surveillance planning with Bézier curves. IEEE Robot. Autom. Lett. 3(2), 750–757 (2018)CrossRefGoogle Scholar
  15. 15.
    Goncalves, J.A., Henriques, R.: UAV photogrammetry for topographic monitoring of coastal areas. ISPRS J. Photogram. Remote Sens. 104, 101–111 (2015)CrossRefGoogle Scholar
  16. 16.
    Gunawan, A., Lau, H.C., Vansteenwegen, P.: Orienteering problem: a survey of recent variants, solution approaches and applications. Eur. J. Oper. Res. 255(2), 315–332 (2016)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Hansen, P., Mladenovi, N.: Variable neighborhood search: principles and applications. Eur. J. Oper. Res. 130(3), 449–467 (2001)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Helsgaun, K.: An effective implementation of the Lin-Kernighan traveling salesman heuristic. Eur. J. Oper. Res. 126(1), 106–130 (2000)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Hodicky, J.: Standards to support military autonomous system life cycle. In: Březina, T., Jabłoński, R. (eds.) MECHATRONICS 2017. AISC, vol. 644, pp. 671–678. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-65960-2_83CrossRefGoogle Scholar
  20. 20.
    Lawler, E.L.: The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization. Wiley-Interscience Series in Discrete Mathematics (1985)Google Scholar
  21. 21.
    Lepetič, M., Klančar, G., Škrjanc, I., Matko, D., Potočnik, B.: Path planning and path tracking for nonholonomic robots. Mob. Robot.: New Res. 345–368 (2005)Google Scholar
  22. 22.
    Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling-salesman problem. Oper. Res. 21(2), 498–516 (1973)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Lorenz, S., Adolf, F.M.: A decoupled approach for trajectory generation for an unmanned rotorcraft. In: Holzapfel, F., Theil, S. (eds.) Advances in Aerospace Guidance, Navigation and Control, pp. 3–14. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19817-5_1CrossRefGoogle Scholar
  24. 24.
    Morgenthal, G., Hallermann, N.: Quality assessment of unmanned aerial vehicle (UAV) based visual inspection of structures. Adv. Struct. Eng. 17(3), 289–302 (2014)CrossRefGoogle Scholar
  25. 25.
    Oberlin, P., Rathinam, S., Darbha, S.: Today’s traveling salesman problem. Robot. Autom. Mag. 17(4), 70–77 (2010)CrossRefGoogle Scholar
  26. 26.
    Pajares, G.: Overview and current status of remote sensing applications based on unmanned aerial vehicles (UAVs). Photogram. Eng. Remote Sens. 81(4), 281–329 (2015)CrossRefGoogle Scholar
  27. 27.
    Perks, M.T., Russell, A.J., Large, A.R.: Advances in flash flood monitoring using unmanned aerial vehicles (UAVs). Hydrol. Earth Syst. Sci. 20(10), 4005–4015 (2016)CrossRefGoogle Scholar
  28. 28.
    Pěnička, R., Faigl, J., Vana, P., Saska, M.: Dubins orienteering problem. IEEE Robot. Autom. Lett. 2(2), 1210–1217 (2017)CrossRefGoogle Scholar
  29. 29.
    Pěnička, R., Faigl, J., Váňa, P., Saska, M.: Dubins orienteering problem with neighborhoods. In: 2017 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 1555–1562, June 2017Google Scholar
  30. 30.
    Quater, P.B., Grimaccia, F., Leva, S., Mussetta, M., Aghaei, M.: Light unmanned aerial vehicles (UAVs) for cooperative inspection of PV plants. IEEE J. Photovoltaics 4(4), 1107–1113 (2014)CrossRefGoogle Scholar
  31. 31.
    Quigley, M., Goodrich, M., Griffiths, S., Eldredge, A., Beard, R.: Target acquisition, localization, and surveillance using a fixed-wing mini-UAV and gimbaled camera. Robotics and Automation, April 2005Google Scholar
  32. 32.
    Ramesh, R., Brown, K.M.: An efficient four-phase heuristic for the generalized orienteering problem. Comput. Oper. Res. 18(2), 151–165 (1991)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Rego, C., Gamboa, D., Glover, F., Osterman, C.: Traveling salesman problem heuristics: leading methods, implementations and latest advances. Eur. J. Oper. Res. 211(3), 411–427 (2011)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Russell, S., Norvig, P.: Artificial intelligence: a modern approach. Artif. Intell. 25(27), 79–80 (1995)Google Scholar
  35. 35.
    Saari, H., et al.: Unmanned aerial vehicle (UAV) operated spectral camera system for forest and agriculture applications. In: Remote Sensing for Agriculture, Ecosystems, and Hydrology, vol. 13, October 2011Google Scholar
  36. 36.
    Salkin, H.M., Kluyver, C.A.D.: The knapsack problem: a survey. Naval Res. Logistics Q. 22(1), 127–144 (1975)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Saska, M., Langr, J., Preucil, L.: Plume tracking by a self-stabilized group of micro aerial vehicles. In: Hodicky, J. (ed.) Modelling and Simulation for Autonomous Systems Modelling and Simulation for Autonomous Systems, vol. 8906, pp. 44–55. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-13823-7_5CrossRefGoogle Scholar
  38. 38.
    Schopferer, S., Adolf, F.M.: Rapid trajectory time reduction for unmanned rotorcraft navigating in unknown terrain. In: 2014 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 305–316, May 2014Google Scholar
  39. 39.
    Sevkli, Z., Sevilgen, F.E.: Variable neighborhood search for the orienteering problem. In: Levi, A., Savaş, E., Yenigün, H., Balcısoy, S., Saygın, Y. (eds.) ISCIS 2006. LNCS, vol. 4263, pp. 134–143. Springer, Heidelberg (2006).  https://doi.org/10.1007/11902140_16CrossRefGoogle Scholar
  40. 40.
    Sprunk, C.: Planning motion trajectories for mobile robots using splines. University of Freiburg, Student project (2008)Google Scholar
  41. 41.
    Tsiligirides, T.: Heuristic methods applied to orienteering. J. Oper. Res. Soc. 35(9), 797–809 (1984)CrossRefGoogle Scholar
  42. 42.
    Váňa, P., Faigl, J.: On the dubins traveling salesman problem with neighborhoods. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4029–4034 (2015)Google Scholar
  43. 43.
    Wagner, P., Kotzian, J., Kordas, J., Michna, V.: Path planning and tracking for robots based on cubic Hermite splines in real-time. In: 2010 IEEE 15th Conference on Emerging Technologies Factory Automation (ETFA 2010), pp. 1–8, September 2010Google Scholar
  44. 44.
    Yang, G.J., Delgado, R., Choi, B.W.: A practical joint-space trajectory generation method based on convolution in real-time control. Int. J. Adv. Robot. Syst. 13(2), 56 (2016)CrossRefGoogle Scholar
  45. 45.
    Yuan, C., Zhang, Y., Liu, Z.: A survey on technologies for automatic forest re monitoring, detection, and ghting using unmanned aerial vehicles and remote sensing techniques. Can. J. For. Res. 45(7), 783–792 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alexander Dubeň
    • 1
    Email author
  • Robert Pěnička
    • 1
  • Martin Saska
    • 1
  1. 1.Faculty of Electrical EngineeringCzech Technical UniversityPragueCzech Republic

Personalised recommendations