Advertisement

Monocular Kinematics Based on Geometric Algebras

  • Marek StodolaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11472)

Abstract

When reconstructing 3D scene by an autonomous system we usually use a pin hole camera. To adopt the result for a human vision, this camera must be replaced by a human eye-like device. Therefore we derive certain characteristics of this model in an appropriate mathematical formalism. In particular, we escribe the general position of a human eye and its movements using the notions of geometric algebra. The assumption is that the eye is focused on distant targets. As the main result, we describe the eye position and determine all axes of rotation available in the eye general position in terms of geometric algebra. All the expressions are based on medically traced laws of Donders’ and Listing.

Keywords

Geometric algebra Rotation Donders’ law Listing’s law 

Notes

Acknowledgements

This research was supported by a grant of the Czech Science Foundation no. 17-21360S, “Advances in Snake-like Robot Control” and by a Grant No. FSI-S-17-4464.

References

  1. 1.
    Bayro-Corrochano, W.: Modeling the 3D kinematics of the eye in the geometric algebra framework. Pattern Recogn. 36(12), 2993–3012 (2003).  https://doi.org/10.1016/S0031-3203(03)00180-8CrossRefGoogle Scholar
  2. 2.
    Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science: An Object-oriented Approach to Geometry, 1st edn. Morgan Kaufmann Publishers Inc., Burlington (2007)Google Scholar
  3. 3.
    Haslwanter, T.: Mathematics of three-dimensional eye rotations. Vision. Res. 35(12), 1727–1739 (1995).  https://doi.org/10.1016/0042-6989(94)00257-MCrossRefGoogle Scholar
  4. 4.
    Hestenes, D.: New Foundations for Classical Mechanics, 2nd edn. Kluwer Academic Publishers, Dordrecht (1999)Google Scholar
  5. 5.
    Hildenbrand, D.: Foundations of Geometric Algebra Computing. Springer, New York (2013).  https://doi.org/10.1007/978-3-642-31794-1CrossRefGoogle Scholar
  6. 6.
    Hrdina, J., Návrat, A.: Binocular computer vision based on conformal geometric algebra. Adv. Appl. Clifford Algebr. 27c, 1945–1959 (2017).  https://doi.org/10.1007/s00006-017-0764-4MathSciNetCrossRefGoogle Scholar
  7. 7.
    Hrdina, J., Návrat, A., Vašík, P., Matoušek, R.: Geometric control of the trident snake robot based on CGA. Adv. Appl. Clifford Algebr. 27, 621–632 (2017)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Hrdina, J., Vašík, P.: Notes on differential kinematics in conformal geometric algebra approach. In: Matoušek, R. (ed.) Mendel 2015. AISC, vol. 378, pp. 363–374. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-19824-8_30CrossRefGoogle Scholar
  9. 9.
    Hrdina, J., Návrat, A., Vašík, P., Matoušek, R.: Geometric algebras for uniform colour spaces. Math. Methods Appl. Sci. 41, 4117–4130 (2018).  https://doi.org/10.1002/mma.4489MathSciNetCrossRefGoogle Scholar
  10. 10.
    Hrdina, J., Návrat, A., Vašík, P.: Control of 3-link robotic snake based on conformal geometric algebra. Adv. Appl. Clifford Algebr. 26, 1069–1080 (2016).  https://doi.org/10.1007/s00006-015-0621-2MathSciNetCrossRefGoogle Scholar
  11. 11.
    Hrdina, J., Návrat, A., Vašík, P., Matoušek, R.: Fish eye correction by CGA non-linear transformation. Math. Methods Appl. Sci. 41, 4106–4116 (2018).  https://doi.org/10.1002/mma.4455MathSciNetCrossRefGoogle Scholar
  12. 12.
    Hrdina, J., Návrat, A., Vašík, P., Matoušek, R.: CGA-based robotic snake control. Adv. Appl. Clifford Algebr. 27, 621–632 (2017).  https://doi.org/10.1007/s00006-016-0695-5MathSciNetCrossRefGoogle Scholar
  13. 13.
    Lounesto, P.: Clifford Algebra and Spinors, 2nd edn. Cambridge University Press, Cambridge (2006)Google Scholar
  14. 14.
    MacDonald, A.: Linear and Geometric Algebra. Third printing, corrected and slightly revised (2010)Google Scholar
  15. 15.
    Perwass, C.: Geometric Algebra with Applications in Engineering. Springer, New York (2009).  https://doi.org/10.1007/978-3-540-89068-3CrossRefGoogle Scholar
  16. 16.
    Wong, A.M.F.: Listing’s law: clinical significance and implications for neural control. Surv. Ophthalmol. 49(6), 563–575 (2004).  https://doi.org/10.1016/j.survophthal.2004.08.002MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Mechanical EngineeringBrno University of TechnologyBrnoCzech Republic

Personalised recommendations