Advertisement

Models of Linear Viscoelasticity

  • Sverre HolmEmail author
Chapter

Abstract

This chapter gives an overview of the main methods for characterizing viscoelastic systems in terms of the relaxation modulus and the creep response. A comparison is also made between linear differential equation descriptions and convolution descriptions, and in particular those with fading convolution kernels

References

  1. F. Akyildiz, R. Jones, K. Walters, On the spring-dashpot representation of linear viscoelastic behaviour. Rheol. Acta 29(5), 482–484 (1990)CrossRefGoogle Scholar
  2. L. Boltzmann, Zur theorie der elastischen nachwirkung (On the theory of hereditary elastic effects). Ann. Phys. Chem. 7, 624–654 (1876)Google Scholar
  3. M. Caputo, F. Mainardi, (1971 a), Linear models of dissipation in anelastic solids, La Rivista del Nuovo Cimento (1971-1977)1(2), 161–198 (1971a)ADSCrossRefGoogle Scholar
  4. P. Duhem, Études sur Léonard de Vinci: troisième série, Les précurseurs parisiens de Galilée (Studies of Leonardo da Vinci: vol. 3, The Parisian precursors of Galileo), Hermann (1913)Google Scholar
  5. H. Giesekus, An alternative approach to the linear theory of viscoelasticity and some characteristic effects being distinctive of the type of material. Rheol. Acta 34(1), 2–11 (1995)CrossRefGoogle Scholar
  6. E. Grant, The Foundations of Modern Science in the Middle Ages: Their Religious, Institutional and Intellectual Contexts (Cambridge University Press, Cambridge, 1996)CrossRefGoogle Scholar
  7. P. Haupt, A. Lion, On finite linear viscoelasticity of incompressible isotropic materials. Acta Mech. 159(1), 87–124 (2002)CrossRefGoogle Scholar
  8. S. Holm, M.B. Holm, Restrictions on wave equations for passive media. J. Acoust. Soc. Am. 142(4), (2017)Google Scholar
  9. S. Holm, S.P. Näsholm, A causal and fractional all-frequency wave equation for lossy media. J. Acoust. Soc. Am. 130(4), 2195–2202 (2011)ADSCrossRefGoogle Scholar
  10. H. Kragh, The vortex atom: A victorian theory of everything. Centaurus 44(1–2), 32–114 (2002)MathSciNetCrossRefGoogle Scholar
  11. A. Lion, On the thermodynamics of fractional damping elements. Contin. Mech. Thermodyn. 9(2), 83–96 (1997)ADSMathSciNetCrossRefGoogle Scholar
  12. F. Mainardi, Fractional Calculus and Waves in Linear Viscoelesticity: An Introduction to Mathematical Models (Imperial College Press, London, UK, 2010)CrossRefGoogle Scholar
  13. H. Markovitz, Boltzmann and the beginnings of linear viscoelasticity. Trans. Soc. Rheol. (1957–1977) 21(3), 381–398 (1977)MathSciNetCrossRefGoogle Scholar
  14. P.L. Marston, L. Zhang, Unphysical consequences of negative absorbed power in linear passive scattering: Implications for radiation force and torque. JASA 139(6), 3139–3144 (2016)CrossRefGoogle Scholar
  15. J.C. Maxwell, IV. On the dynamical theory of gases. Phil. Trans. Royal Soc. 157, 49–88 (1867)Google Scholar
  16. A.N. Norris, An inequality for longitudinal and transverse wave attenuation coefficients. JASA 141(1), 475–479 (2017)CrossRefGoogle Scholar
  17. R.L. Schilling, R. Song, Z. Vondracek, Bernstein Functions: Theory and Applications (Walter de Gruyter, Berlin, 2012)CrossRefGoogle Scholar
  18. C. Smith, M.N. Wise, Energy and Empire: A Biographical Study of Lord Kelvin (Cambridge University Press, Cambridge, 1989)Google Scholar
  19. M. Stanley, Why should physicists study history? Phys. Today 69(7), 39–44 (2016)CrossRefGoogle Scholar
  20. P. Triverio, S. Grivet-Talocia, M.S. Nakhla, F.G. Canavero, R. Achar, Stability, causality, and passivity in electrical interconnect models. IEEE Trans. Adv. Packag. 30(4), 795–808 (2007)CrossRefGoogle Scholar
  21. N.W. Tschoegl, The Phenomenological Theory of Linear Viscoelastic Behavior: An Introduction, (Springer, Berlin, 1989) (Reprinted in 2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of InformaticsUniversity of OsloOsloNorway

Personalised recommendations