DCM Boost Converter in CPM Operation for Tuning Piezoelectric Energy Harvesters

  • Andrés Gomez-CasseresEmail author
  • David Florez
  • Darío Cortes
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 554)


The power extraction from piezoelectric energy harvesters is considered an important alternative to the employment of batteries when powering ultra-low power circuits. However, the amount of extracted power and the frequency range where extraction is possible remain as key challenges for practical implementations. In this paper, a boost rectifier in Current Programmed Mode (CPM) able to emulate a complex load at its input terminals is presented. This circuit is validated through circuit simulation using PSIM9. From the results, the circuit is capable of extracting the maximum available power from a piezoelectric harvester, modeled by an electric equivalent circuit, at its first resonant frequency. This is achieved by the emulation of an RC network at the harvester’s terminals by controlling the peak current through its inductance.


Boost rectifier Current programed mode Energy harvesting Piezoelectric 


  1. 1.
    Abdelmoula, H., Abdelkefi, A.: Ultra-wide bandwidth improvement of piezoelectric energy harvesters through electrical inductance coupling. Eur. Phys. J. Spec. Top. 224(14–15), 2733–2753 (2015). Scholar
  2. 2.
    Bowden, J.A., Burrow, S.G., Cammarano, A., Clare, L.R., Mitcheson, P.D.: Switched-mode load impedance synthesis to parametrically tune electromagnetic vibration energy harvesters. IEEE/ASME Trans. Mechatron. 20(2), 603–610 (2015). Scholar
  3. 3.
    Gomez-Casseres, E.A., Arbulu, S.M., Franco, R.J., Contreras, R., Martinez, J.: Comparison of passive rectifier circuits for energy harvesting applications. In: 2016 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), pp. 1–6 (2016).
  4. 4.
    Le, T.T., Han, J., von Jouanne, A., Mayaram, K., Fiez, T.S.: Piezoelectric micro-power generation interface circuits. IEEE J. Solid-State Circuits 41(6), 1411–1420 (2006). Scholar
  5. 5.
    Liu, H., Qian, Y., Lee, C.: A multi-frequency vibration-based MEMS electromagnetic energy harvesting device. Sens. Actuators A: Phys. 204, 37–43 (2013). Scholar
  6. 6.
    Sankman, J., Ma, D.: A 12-\(\upmu \)W to 1.1-mW AIM piezoelectric energy harvester for time-varying vibrations with 450-nA IQ. IEEE Trans. Power Electron. 30(2), 632–643 (2015). Scholar
  7. 7.
    Szarka, G.D., Burrow, S.G., Stark, B.H.: Ultralow power, fully autonomous boost rectifier for electromagnetic energy harvesters. IEEE Trans. Power Electron. 28(7), 3353–3362 (2013). Scholar
  8. 8.
    Szarka, G.D., Stark, B.H., Burrow, S.G.: Review of power conditioning for kinetic energy harvesting systems. IEEE Trans. Power Electron. 27(2), 803–815 (2012). Scholar
  9. 9.
    Todaro, M.T., Guido, F., Mastronardi, V., Desmaele, D., Epifani, G., Algieri, L., De Vittorio, M.: Piezoelectric MEMS vibrational energy harvesters: advances and outlook. Microelectron. Eng. (2017).
  10. 10.
    Toprak, A., Tigli, O.: Piezoelectric energy harvesting: state-of-the-art and challenges. Appl. Phys. Rev. 1(3), 031104 (2014). Scholar
  11. 11.
    Yang, G., Stark, B.H., Hollis, S.J., Burrow, S.G.: Challenges for energy harvesting systems under intermittent excitation. IEEE J. Emerg. Sel. Top. Circuits Syst. 4(3), 364–374 (2014)CrossRefGoogle Scholar
  12. 12.
    Yang, Y., Tang, L.: Equivalent circuit modeling of piezoelectric energy harvesters. J. Intell. Mater. Syst. Struct. 20(18), 2223–2235 (2009). Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Andrés Gomez-Casseres
    • 1
    Email author
  • David Florez
    • 2
  • Darío Cortes
    • 3
  1. 1.Corporación Unificada Nacional de Educación Superior - CUNBogotáColombia
  2. 2.Departamento de Ingeniería ElectrónicaPontificia Universidad JaverianaBogotáColombia
  3. 3.Corporación Unificada Nacional de Educación Superior - CUNBogotáColombia

Personalised recommendations