Advertisement

Stability and Chaotic Attractors of Memristor-Based Circuit with a Line of Equilibria

  • N. V. KuznetsovEmail author
  • T. N. Mokaev
  • E. V. Kudryashova
  • O. A. Kuznetsova
  • R. N. Mokaev
  • M. V. Yuldashev
  • R. V. Yuldashev
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 554)

Abstract

This report investigates the stability problem of memristive systems with a line of equilibria on the example of SBT memristor-based Wien-bridge circuit. For the considered system, conditions of local and global partial stability are obtained, and chaotic dynamics is studied.

Keywords

Partial stability Memristor Chaos Hidden attractors 

Notes

Acknowledgements

The authors wish to thank Prof. Leon Chua (University of California, Berkeley, USA) for the fruitful discussions and valuable comments on memristive systems. This work was supported by Russian Scientific Foundation project 19-41-02002 (Sects. 24) the Leading Scientific Schools of Russia grant NSh-2858.2018.1 (Sect. 1).

References

  1. 1.
    Chua, L.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)CrossRefGoogle Scholar
  2. 2.
    Tetzlaff, R.: Memristors and memristive systems. Springer, Heidelberg (2013)Google Scholar
  3. 3.
    Adamatzky, A., Chen, G.: Chaos, CNN, Memristors and Beyond: A Festschrift for Leon Chua. World Scientific, Singapore (2013)CrossRefGoogle Scholar
  4. 4.
    Vaidyanathan, S., Volos, C.: Advances in Memristors, Memristive Devices and Systems, vol. 701. Springer (2017)Google Scholar
  5. 5.
    Guo, M., Gao, Z., Xue, Y., Dou, G., Li, Y.: Dynamics of a physical SBT memristor-based Wien-bridge circuit. Nonlinear Dyn. 93(3), 1681–1693 (2018)CrossRefGoogle Scholar
  6. 6.
    Shoshitaishvili, A.N.: Bifurcations of topological type of a vector field near a singular point. Trudy Semin. Im. IG Petrovskogo 1, 279–309 (1975)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Rumyantsev, V.V., Oziraner, A.S.: Stability and Partial Motion Stabilization. Nauka, Moscow (1987). (in Russian)zbMATHGoogle Scholar
  8. 8.
    Leonov, G., Kuznetsov, N.: Hidden attractors in dynamical systems. From hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractors in Chua circuits. International Journal of Bifurcation and Chaos 23(1) (2013), art. no. 1330002Google Scholar
  9. 9.
    Leonov, G., Kuznetsov, N., Mokaev, T.: Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion. Eur. Phys. J. Spec. Top. 224(8), 1421–1458 (2015)CrossRefGoogle Scholar
  10. 10.
    Dudkowski, D., Jafari, S., Kapitaniak, T., Kuznetsov, N., Leonov, G., Prasad, A.: Hidden attractors in dynamical systems. Phys. Rep. 637, 1–50 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Stankevich, N., Kuznetsov, N., Leonov, G., Chua, L.: Scenario of the birth of hidden attractors in the Chua circuit. International Journal of Bifurcation and Chaos 27(12) (2017), art. num. 1730038Google Scholar
  12. 12.
    Chen, G., Kuznetsov, N., Leonov, G., Mokaev, T.: Hidden attractors on one path: Glukhovsky-Dolzhansky, Lorenz, and Rabinovich systems. International Journal of Bifurcation and Chaos 27(8) (2017), art. num. 1750115Google Scholar
  13. 13.
    Kuznetsov, N., Leonov, G., Mokaev, T., Prasad, A., Shrimali, M.: Finite-time Lyapunov dimension and hidden attractor of the Rabinovich system. Nonlinear Dyn. 92(2), 267–285 (2018)CrossRefGoogle Scholar
  14. 14.
    Zelinka, I.: A survey on evolutionary algorithms dynamics and its complexity - mutual relations, past, present and future. Swarm Evol. Comput. 25, 2–14 (2015)CrossRefGoogle Scholar
  15. 15.
    Zelinka, I.: Evolutionary identification of hidden chaotic attractors. Engineering ApplicatiEng. Appl. Artif. Intell. 50, 159–167 (2016)CrossRefGoogle Scholar
  16. 16.
    Leonov, G., Kuznetsov, N.: On differences and similarities in the analysis of Lorenz, Chen, and Lu systems. Appl. Math. Comput. 256, 334–343 (2015)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Corinto, F., Ascoli, A., Gilli, M.: Nonlinear dynamics of memristor oscillators. IEEE Trans. Circuits Syst. I: Regul. Pap. 58(6), 1323–1336 (2011)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Corinto, F., Forti, M.: Memristor circuits: flux-charge analysis method. IEEE Trans. Circuits Syst. 63(11), 1997–2009 (2016)CrossRefGoogle Scholar
  19. 19.
    Kuznetsov, N.V., Kuznetsova, O.A., Kudryashova, E.V., Mokaev, T.N., Mokaev, R.N., Yuldashev, M.V., Yuldashev, R.V., Chua, L.: Theory of stability for memristive systems with a line of equilibria (2019, in prepartion)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • N. V. Kuznetsov
    • 1
    • 2
    • 3
    Email author
  • T. N. Mokaev
    • 1
  • E. V. Kudryashova
    • 1
  • O. A. Kuznetsova
    • 1
  • R. N. Mokaev
    • 1
    • 2
  • M. V. Yuldashev
    • 1
  • R. V. Yuldashev
    • 1
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.University of JyväskyläJyväskyläFinland
  3. 3.Institute of Problems of Mechanical Engineering RASSt. PetersburgRussia

Personalised recommendations