Advertisement

Stabilization of Time-Varying Systems Subject to Actuator Saturation: A Takagi-Sugeno Approach

  • Sabrina AouaoudaEmail author
  • Mohammed Chadli
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 554)

Abstract

This paper investigates the problem of control design for a class of time-varying parameter systems subject to input and state constraints. The aim is to synthesize a control strategy by combining a descriptor approach and a dynamic state feedback control laws. This ensures the closed-loop system stability with respect to the given saturation constraints on the control input. The optimization problem is formulated in terms of linear matrix inequality constraints (LMIs). Nonlinear vehicle model is used to highlight the effectiveness of the proposed approach.

Keywords

Time-varying systems Actuator saturation Descriptor approach Stability \( {\mathcal{L}}_{2} \)-gain performance Linear Matrix Inequality (LMI) 

References

  1. 1.
    Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Men Cybern. SMC-15(1), 116–132 (1985)CrossRefGoogle Scholar
  2. 2.
    Tanaka, K., Wang, H.: Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. Wiley-Interscience, New York (2001)CrossRefGoogle Scholar
  3. 3.
    Fang, C.H., Liu, Y.S., Kau, S.W., Hong, L., Lee, C.H.: A new LMI-based approach to relaxed quadratic stabilization of T-S fuzzy control systems. IEEE Trans. Fuzzy Syst. 14(3), 386–394 (2006)CrossRefGoogle Scholar
  4. 4.
    Sala, A., Arino, C.: Relaxed stability and performance conditions for Takagi-Sugeno fuzzy systems with knowledge on membership function overlap. IEEE Trans. Syst. Men Cybern. 37(3), 727–732 (2007)CrossRefGoogle Scholar
  5. 5.
    Hoffmann, C., Werner, H.: A survey of linear parameter-varying control applications validated by experiments or high-fidelity simulations. IEEE Trans. Control Syst. Technol. 23(2), 416–433 (2015)CrossRefGoogle Scholar
  6. 6.
    Fergani, S., Menhour, L., Sename, O., Dugard, L., D’Andrea-Novel, B.: Integrated vehicle control through the coordination of longitudinal/lateral and vertical dynamics controllers: flatness and LPV/H\( \infty \)-based design. Int. J. Robust Nonlinear Control 27(18), 4992–5007 (2017)Google Scholar
  7. 7.
    Tarbouriech, S., Garcia, G., da Silva, J.G., Queinnec, I.: Stability and Stabilization of Linear Systems with Saturating Actuators. Springer, London (2011)CrossRefGoogle Scholar
  8. 8.
    Saifia, D., Chadli, M., Labiod, S., Guerra, T.M.: Robust H∞ static output feedback stabilization of T-S fuzzy systems subject to actuator saturation. Int. J. Control Autom. Syst. 10(3), 613–622 (2012)CrossRefGoogle Scholar
  9. 9.
    Nguyen, A.-T., Dambrine, M., Lauber, J.: Simultaneous design parallel distributed output feedback and anti-windup compensators for constrained Takagi-Sugeno fuzzy systems. Asian J. Control 18(5), 1641–1654 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Dang, Q.V., Vermeiren, L., Dequidt, A., Dambrine, M.: Robust stabilizing controller design for Takagi-Sugeno fuzzy descriptor systems under state constraints and actuator saturation. Fuzzy Sets Syst. 329, 77–90 (2017)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Bezzaoucha, S., Marks, B., Maquin, D., Ragot, J.: Stabilization of nonlinear systems subject to uncertainties and actuator saturation. In: Proceeding of the American Control Conference, pp. 2403–2408 (2013)Google Scholar
  12. 12.
    Gao, Y.-Y., Lin, Z., Shamash, Y.: Set invariance analysis and gain-scheduling control for LPV systems subject to actuator saturation. Syst. Control Lett. 46(2), 137–151 (2002)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Nguyen, A.-T., Chevrel, P., Claveau, F.: Gain-scheduled static output feedback control for saturated LPV systems with bounded parameter variations. Automatica 89, 420–424 (2018)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Tuan, H., Apkarian, P., Narikiyo, T., Yamamoto, Y.: Parameterized linear matrix inequality techniques in fuzzy control design. IEEE Trans. Fuzzy Syst. 9, 324–332 (2001)CrossRefGoogle Scholar
  15. 15.
    Aouaouda, S., Chadli, M., Boukhnifer, M., Karimi, H.k.: Robust fault tracking controller design for vehicle dynamics: A descriptor approach. Mechatronics 30, 316–326 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Faculty of Sciences and TechnologiesUniv. Souk Ahras-LEERSouk-AhrasAlgeria
  2. 2.MIS (E.A.4290)University of Picardie Jules VerneAmiensFrance

Personalised recommendations