Advertisement

Convergence Study of Different Approaches of Solving the Hartree-Fock Equation on the Potential Curve of the Hydrogen Fluoride

  • Martin MrovecEmail author
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 554)

Abstract

The aim of the paper is to compare the convergence of chosen numerical methods, namely the Direct Inversion of the Iterative Subspace and the Inexact Restoration Method, for solving the nonlinear eigenvalue problem occurring in the electronic structure calculations. We have selected the Hartree-Fock approximation where the behavior of the energy functional is known. The numerical experiments are performed on the modeling of the potential curve of the Hydrogen fluoride molecule. The results will be used as a clue for the development of optimization methods in the area of the Density Functional Theory.

Keywords

Electronic structure calculations Direct Inversion of the Iterative Subspace Inexact Restoration Method Hartree-Fock approximation 

Notes

Acknowledgements

This work was supported by The Ministry of Education, Youth and Sports from the National Programme of Sustainability (NPS II) project IT4Innovations excellence in science - LQ1602, by Grant of SGS No. SP2018/165 and SP2018/178, VŠB - Technical University of Ostrava, Czech Republic. An important support has been provided by project OPEN-10-35 within the Open Access Call announced by IT4Innovations which enabled us to use the supercomputing services.

References

  1. 1.
    Pan, Y., Lin, Y.: Influence of re concentration on the mechanical properties of tungsten borides from first-principles calculations. JOM 69(10), 2009–2013 (2017).  https://doi.org/10.1007/s11837-017-2483-7. ISSN 1047-4838CrossRefGoogle Scholar
  2. 2.
    Saad, Y., Chelikowsky, J.R., Shontz, S.M.: Numerical methods for electronic structure calculations of materials. SIAM Rev. (2010).  https://doi.org/10.1137/060651653. ISSN 0036-1445, Zbl 1185.82004
  3. 3.
    Khoromskaia, V., Khoromskij, B.N., Schneider, R.: Tensor-structured factorized calculation of two-electron integrals in a general basis. SIAM J. Sci. Comput. 35(2), A987–A1010 (2013).  https://doi.org/10.1137/120884067. ISSN 1064-8275, Zbl 1266.65069MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Mrovec, M.: Tensor approximation of slater-type orbital basis functions. Adv. Electr. Electron. Eng. 15(2) (2017).  https://doi.org/10.15598/aeee.v15i2.2235, http://advances.utc.sk/index.php/AEEE/article/view/2235. ISSN 1804-3119
  5. 5.
    Mrovec, M.: Low-rank tensor representation of Slater-type and Hydrogen-like orbitals. Appl. Math. 62(6), 679–698 (2017).  https://doi.org/10.21136/AM.2017.0177-17, http://articles.math.cas.cz/10.21136/AM.2017.0177-17
  6. 6.
    Pulay, P.: Convergence acceleration of iterative sequences. The case of SCF iteration. Chem. Phys. Lett. 73(2), 393–398 (1980)CrossRefGoogle Scholar
  7. 7.
    Hu, W., Lin, L., Yang, C.: Projected commutator DIIS method for accelerating hybrid functional electronic structure calculations. J. Chem. Theory Comput. 13(11), 5458–5467 (2017).  https://doi.org/10.1021/acs.jctc.7b00892. ISSN 1549-9618CrossRefGoogle Scholar
  8. 8.
    Pratapa, P.P., Suryanarayana, P.: Restarted Pulay mixing for efficient and robust acceleration of fixed-point iterations. Chem. Phys. Lett. 635, 69–74 (2015).  https://doi.org/10.1016/j.cplett.2015.06.029. ISSN 00092614CrossRefGoogle Scholar
  9. 9.
    Kudin, K.N., Scuseria, G.E., Cances, E.: A black-box self-consistent field convergence algorithm: one step closer. J. Chem. Phys. 116(19), 8255 (2002).  https://doi.org/10.1063/1.1470195. ISSN 00219606CrossRefGoogle Scholar
  10. 10.
  11. 11.
    Francisco, J.B., Martínez, J.M., Martínez, L.: Globally convergent trust-region methods for self-consistent field electronic structure calculations. J. Chem. Phys. 121(22), 10863 (2004).  https://doi.org/10.1063/1.1814935. ISSN 00219606CrossRefGoogle Scholar
  12. 12.
    Martínez, J.M., Martínez, L., Pisnitchenko, F.: Inexact restoration method for minimization problems arising in electronic structure calculations. Comput. Optim. Appl. 50(3), 555–590 (2011)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Dai, X., Liu, Z., Zhang, L., Zhou, A.: A conjugate gradient method for electronic structure calculations. SIAM J. Sci. Comput. 39(6), A2702–A2740 (2017).  https://doi.org/10.1137/16M1072929. ISSN 1064-8275MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Hehre, W.J., Ditchfield, R., Pople, J.A.: Self-consistent molecular orbital methods. XII. Further extensions of gaussian-type basis sets for use in molecular orbital studies of organic molecules. J. Chem. Physi. 56(5), 2257–2261 (1972).  https://doi.org/10.1063/1.1677527. ISSN 0021-9606CrossRefGoogle Scholar
  15. 15.
    Dill, J.D., Pople, J.A.: Self-consistent molecular orbital methods. XV. Extended Gaussian-type basis sets for lithium, beryllium, and boron. J. Chem. Phys. 62(7), 2921–2923 (1975).  https://doi.org/10.1063/1.430801. ISSN 0021-9606CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.FEECS, Department of Applied MathematicsVŠB - Technical University of OstravaOstrava - PorubaCzech Republic
  2. 2.IT4Innovations National Supercomputing CenterVŠB - Technical University of OstravaOstrava - PorubaCzech Republic

Personalised recommendations