Advertisement

Throughput Analysis of Power Beacon-Aided Multi-hop Relaying Networks Employing Non-orthogonal Multiple Access with Hardware Impairments

  • Phu Tran Tin
  • Pham Minh Nam
  • Tran Trung Duy
  • Phuong T. TranEmail author
  • Tam Nguyen Kieu
  • Miroslav Voznak
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 554)

Abstract

In this paper, we evaluate throughput of a power beacon-aided multi-hop relaying networks employing non-orthogonal multiple access (NOMA). In the proposed protocol, the source data are sent to the destination via the multi-hop transmission model. In addition, the source and relay nodes have to harvest energy the radio frequency (RF) signals generated by a power beacon. For performance evaluation, we derive an exact closed-form expression of throughput for the proposed scheme over Rayleigh fading channel and under impact of imperfect transceiver hardware. We finally perform simulation results to verify the theoretical results.

Keywords

Multi-hop relaying networks Beacon-aided energy harvesting NOMA Throughput 

Notes

Acknowledgment

This work was supported by the VSB-Technical University of Ostrava, Czech Republic - Networks and Telecommunications Technologies for Smart Cities under SGS Grant SP2018/59.

References

  1. 1.
    Hasna, M.O., Alouini, M.S.: Outage probability of multihop transmission over Nakagami fading channels. IEEE Commun. Lett. 7(5), 216–218 (2003)CrossRefGoogle Scholar
  2. 2.
    Conne, C., Kim, I.M.: Outage probability of multi-hop amplify-and-forward relay systems. IEEE Trans. Wirel. Commun. 9(2), 1139–1149 (2010)CrossRefGoogle Scholar
  3. 3.
    Farhadi, G., Beaulieu, N.: Fixed relaying versus selective relaying in multi-hop diversity transmission systems. IEEE Trans. Wirel. Commun. 58(3), 956–965 (2010)CrossRefGoogle Scholar
  4. 4.
    Tin, P.T., Hung, D.T., Duy, T.T., Voznak, M.: Analysis of probability of non-zero secrecy capacity for multi-hop networks in presence of hardware impairments over Nakagami-m fading Channels. RadioEngineering 25(4), 774–782 (2016)CrossRefGoogle Scholar
  5. 5.
    Tin, P.T., Nam, P.M., Duy, T.T., Voznak, M.: Security-reliability analysis for a cognitive multi-hop protocol in cluster networks with hardware imperfections. IEIE Trans. Smart Process. Comput. 6(3), 200–209 (2017)Google Scholar
  6. 6.
    Ding, Z., Yang, Z., Fan, P., Poor, H.V.: On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users. IEEE Sig. Process. Lett. 21(12), 1501–1505 (2014)CrossRefGoogle Scholar
  7. 7.
    Ding, Z., Peng, M., Poor, H.V.: Cooperative non-orthogonal multiple access in 5G systems. IEEE Commun. Lett. 19(8), 1462–1465 (2015)CrossRefGoogle Scholar
  8. 8.
    Ding, Z., Dai, H., Poor, H.V.: Relay selection for cooperative NOMA. IEEE Wirel. Commun. Lett. 5(4), 419–426 (2016)CrossRefGoogle Scholar
  9. 9.
    Liang, X., Wu, Y., Kwan, D.W., Zuo, Y., Jin, S., Zhu, H.: Outage performance for cooperative NOMA transmission with an AF relay. IEEE Commun. Lett. 21(11), 2428–2431 (2017)CrossRefGoogle Scholar
  10. 10.
    Tin, P.T., Hung, D.T., Duy, T.T., Voznak, M.: Security-reliability analysis of NOMA – based multi-hop relay networks in presence of an active eavesdropper with imperfect eavesdropping CSI. Adv. Electr. Electron. Eng. 15(4), 591–597 (2017)Google Scholar
  11. 11.
    Xu, C., Zheng, M., Liang, W., Yu, H., Liang, Y.C.: Outage performance of underlay multihop cognitive relay networks with energy harvesting. IEEE Commun. Lett. 20(6), 1148–1151 (2016)CrossRefGoogle Scholar
  12. 12.
    Xu, C., Zheng, M., Liang, W., Yu, H., Liang, Y.C.: End-to-end throughput maximization for underlay multi-hop cognitive radio networks with RF energy harvesting. IEEE Trans. Wirel. Commun. 16(6), 3561–3572 (2017)CrossRefGoogle Scholar
  13. 13.
    Hieu, T.D., Duy, T.T., Dung, L.T., Choi, S.G.: Performance evaluation of relay selection schemes in beacon-assisted dual-hop cognitive radio wireless sensor networks under impact of hardware noises. Sensors 18(6), 1–24 (2018)CrossRefGoogle Scholar
  14. 14.
    Hieu, T.D., Duy, T.T., Choi, S.G.: Performance enhancement for harvest-to-transmit cognitive multi-hop networks with best path selection method under presence of eavesdropper. In: The 20th IEEE International Conference on Advanced Communications Technology (ICACT 2018), Gangwondo, Korea, pp. 323–328 (2018)Google Scholar
  15. 15.
    Hieu, T.D., Duy, T.T., Kim, B.-S.: Performance enhancement for multi-hop harvest-to-transmit WSNs with path-selection methods in presence of eavesdroppers and hardware noises. IEEE Sens. J. 18(12), 5173–5186 (2018)CrossRefGoogle Scholar
  16. 16.
    Selim, B., Muhaidat, S., Sofotasios, P.C., Sharif, B.S., Stouraitis, T., Karagiannidis, G.K., Al-Dhahir, N.: Performance analysis of non-orthogonal multiple access under I/Q imbalance. IEEE Access 6, 18453–18468 (2018)CrossRefGoogle Scholar
  17. 17.
    Ding, F., Wang, H., Zhang, S., Dai, M.: Impact of residual hardware impairments on non-orthogonal multiple access based amplify-and-forward relaying networks. IEEE Access 6, 15117–15131 (2018)CrossRefGoogle Scholar
  18. 18.
    Matthaiou, M., Papadogiannis, A.: Two-way relaying under the presence of relay transceiver hardware impairments. IEEE Commun. Lett. 17(6), 1136–1139 (2013)CrossRefGoogle Scholar
  19. 19.
    Bjornson, E., Matthaiou, M., Debbah, M.: A new look at dual-hop relaying: performance limits with hardware impairments. IEEE Trans. Commun. 61(11), 4512–4525 (2013)CrossRefGoogle Scholar
  20. 20.
    Duy, T.T., Son, P.N.: A novel adaptive spectrum access protocol in cognitive radio with primary multicast network, secondary user selection and hardware impairments. Telecommun. Syst. 65(3), 525–538 (2017)CrossRefGoogle Scholar
  21. 21.
    Herhold, P., Zimmermann, E., Fettweis, G.: A simple cooperative extension to wireless relaying. In: 2004 International Zurich Seminar on Communications, Zurich, Switzerland, February 2004Google Scholar
  22. 22.
    Laneman, J.N., Tse, D., Wornell, G.: Cooperative diversity in wireless networks: efficient protocols and outage behavior. IEEE Trans. Inf. Theory 50(12), 3062–3080 (2004)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Duy, T.T., Son, P.N.: Secrecy performances of multicast underlay cognitive protocols with partial relay selection and without eavesdropper’s information. KSII Trans. Internet Inf. Syst. 9(11), 4623–4643 (2015)Google Scholar
  24. 24.
    Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 6th edn. Academic Press, San Diego (2000)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Phu Tran Tin
    • 1
    • 2
  • Pham Minh Nam
    • 2
    • 3
  • Tran Trung Duy
    • 4
  • Phuong T. Tran
    • 5
    Email author
  • Tam Nguyen Kieu
    • 1
  • Miroslav Voznak
    • 1
  1. 1.VSB - Technical University of OstravaOstrava - PorubaCzech Republic
  2. 2.Faculty of Electronics TechnologyIndustrial University of Ho Chi Minh CityHo Chi Minh CityVietnam
  3. 3.Faculty of Electrical and Electronics EngineeringHCMC University of Technology and EducationHo Chi Minh CityVietnam
  4. 4.Department of TelecommunicationsPosts and Telecommunications Institute of TechnologyHo Chi Minh CityVietnam
  5. 5.Wireless Communications Research Group, Faculty of Electrical and Electronics EngineeringTon Duc Thang UniversityHo Chi Minh CityVietnam

Personalised recommendations