Skip to main content

Hypothyroidism and Hashimoto’s Thyroiditis: Mechanisms, Diagnosis, Neuropsychological Phenotypes, and Treatments

  • Chapter
  • First Online:
Handbook of Medical Neuropsychology

Abstract

Similar to that of other endocrine glands, the thyroid has extensive effects on the central nervous system.

Both authors contributed equally to the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Choufoer JC, Van Rhijn M, Kassenaar AAH, Querido A. Endemic goiter in Western New Guinea: iodine metabolism in goitrous and nongoitrous subjects. J Clin Endocrinol Metab. 1963;23(12):1203–17.

    Article  PubMed  Google Scholar 

  2. Choufoer JC, Van Rhijn M, Querido A. Endemic goiter in Western New Guinea. II. Clinical picture, incidence and pathogenesis of endemic cretinism. 1964.

    Google Scholar 

  3. Adams DD, Kennedy TH, Choufoer JC, Querido A. Endemic goiter in Western New Guinea. III. Thyroid-stimulating activity of serum from severely iodine-deficient people. 1968;28(August).

    Google Scholar 

  4. Man EB, Reid WA, Jones WS. Thyroid function in human pregnancy. I. The significance of serum butanol-extractable iodines in the last trimester. Am J Obstet Gynecol. 1964;90(4):474–81. http://dx.doi.org/10.1016/0002-9378(64)90804-X.

    Article  PubMed  Google Scholar 

  5. Man EB, Holden RH, Jones WS. Thyroid function in human pregnancy. Am J Obstet Gynecol. 1971;109(1):12–9. http://linkinghub.elsevier.com/retrieve/pii/0002937871908258.

    Article  PubMed  Google Scholar 

  6. Man EB, Reid WA, Hellegers AE, Jones WS. Thyroid function in human pregnancy. III. Serum thyroxine-binding prealbumin (TBPA) and thyroxine-binding globulin (TBG) of pregnant women aged 14 through 43 years. Am J Obstet Gynecol. 1969;103(3):338–47.

    Google Scholar 

  7. Man EB, Reid WA, Jones WS. Thyroid function in human pregnancy. IV. Serum butanol-extractable iodine drop with weight gain. Am J Obstet Gynecol. 1968;102(2):244–7. http://dx.doi.org/10.1016/0002-9378(68)90326-8.

    Article  PubMed  Google Scholar 

  8. Man EB, Jones WS. Thyroid function in human pregnancy. V. Incidence of maternal serum low butanol-extractable iodines and of normal gestational TBG and TBPA capacities; retardation of 8-month-old infants. Am J Obstet Gynecol. 1969;104(6):898–908. http://dx.doi.org/10.1016/0002-9378(69)90644-9.

    Article  PubMed  Google Scholar 

  9. Jones WS, Man EB. Thyroid function in human pregnancy. VI. Premature deliveries and reproductive failures of pregnant women with low serum butanol-extractable iodines: maternal serum TBG and TBPA capacities. Am J Obstet Gynecol. 1969;104(6):909–14. http://dx.doi.org/10.1016/0002-9378(69)90645-0.

    Article  PubMed  Google Scholar 

  10. Man EB, Holden RH, Jones WS. Thyroid function in human pregnancy. VII. Development and retardation of 4-year-old progeny of euthyroid and of hypothyroxinemic women. Am J Obstet Gynecol. 1971;109(1):12–9. http://dx.doi.org/10.1016/0002-9378(71)90825-8.

    Article  PubMed  Google Scholar 

  11. Man EB, Jones WS, Holden RH, David Mellits E. Thyroid function in human pregnancy. VIII. Retardation of progeny aged 7 years; relationships to maternal age and maternal thyroid function. Am J Obstet Gynecol. 1971;111(7):905–16. http://dx.doi.org/10.1016/0002-9378(71)90945-8.

    Article  PubMed  Google Scholar 

  12. Man EB, Serunian SA. Thyroid function in human pregnancy. IX. Development or retardation of 7-year-old progeny of hypothyroxinemic women. Am J Obstet Gynecol. 1976;125(7):949–57. http://dx.doi.org/10.1016/0002-9378(76)90494-4.

    Article  PubMed  Google Scholar 

  13. Openstax. Muscle tissue. In: Betts JG, Desaix P, Johnson E, Johnson JE, Korol O, Kruse D, et al., editors. Anatomy & Physiology; 2013. 405–30 p. https://openstax.org/details/books/anatomy-and-physiology.

  14. Beckwith BE, Tucker DM. Medical neuropsychology: the impact of disease on behavior. In: Tarter RE, Van Thiel DH, Edwards KL, editors. Pittsburg, PA: Plenum Press; 1988. 197–221 p.

    Google Scholar 

  15. Mohebati A, Shaha AR. Anatomy of thyroid and parathyroid glands and neurovascular relations. Clin Anat. 2012;25(1):19–31.

    Article  PubMed  Google Scholar 

  16. Allen E, Bhimji S. Anatomy, neck, thyroid. StatPearls Publ. 2017. https://www.ncbi.nlm.nih.gov/books/NBK470452/.

  17. Bergman RA, Afifi AK, Miyauchi R. Anatomy atlases: an anatomy digital library. Thyroidea Ima (of Neubauer) Artery; 2018. https://www.anatomyatlases.org/AnatomicVariants/Cardiovascular/Text/Arteries/ThyroideaIma.shtml.

  18. Ritchie M, Yeap BB. Thyroid hormone: influences on mood and cognition in adults. Maturitas. 2015;81(2):266–75. http://dx.doi.org/10.1016/j.maturitas.2015.03.016.

    Article  PubMed  Google Scholar 

  19. Zimmermann MB, Boelaert K. Iodine deficiency and thyroid disorders. Lancet Diabetes Endocrinol. 2015;3(4):286–95.

    Article  PubMed  Google Scholar 

  20. WHO/UNICEF/ICCIDD. Recommended iodine levels in salt and guidelines for monitoring their adequacy and effectiveness. World Health Organization; 1996. p. 10.

    Google Scholar 

  21. WHO. Assessment of the iodine deficiency disorders and monitoring their elimination. WHO, Geneva; 2007. p. 1–107.

    Google Scholar 

  22. Hetzel BS. Iodine deficiency disorders (Idd) and their eradication. Lancet. 1983;322(8359):1126–9.

    Article  Google Scholar 

  23. Delong G. Iodine and the brain. In: Delong G, Robbins J, Condliffe P, editors. New York; 1989. 231–8 p.

    Google Scholar 

  24. Delange F. The thyroid: a fundamental and clinical text. In: Braverman LE, Utiger RD, editors. Philidelphia: Lippincott; 2000. 743–54 p.

    Google Scholar 

  25. Zimmermann MB. Symposium on “Geographical and geological influences on nutrition”—Iodine deficiency in industrialised countries. Proc Nutr Soc. 2010;69(1):133–43.

    Article  PubMed  Google Scholar 

  26. Esselstyn CB, Gendy G, Doyle J, Golubic M, Roizen MF. A way to reverse CAD? J Fam Pract. 2014;63(7):356–64b. https://www.mdedge.com/jfponline/article/83345/cardiology/way-reverse-cad.

  27. Esselstyn CB. A plant-based diet and coronary artery disease: a mandate for effective therapy. J Geriatr Cardiol. 2017;14(5):317–20.

    PubMed  PubMed Central  Google Scholar 

  28. Aburto NJ, Abudou M, Candeias V, Wu T. Effect of salt iodization to prevent iodine deficiency disorders: a systematic review with meta-analyses. WHO eLibrary Evid Nutr Actions. 2014;142. www.who.int/about/licensing/copyright_form/en/index.html; http://apps.who.int/iris/bitstream/10665/148175/1/9789241508285_eng.pdf.

  29. Bougma K, Aboud FE, Harding KB, Marquis GS. Iodine and mental development of children 5 years old and under: a systematic review and meta-analysis. Nutrients. 2013;5(4):1387–416.

    Article  Google Scholar 

  30. Gessl A, Lemmens-Gruber R, Kautzky-Willer A. Sex and Gender Differences in Pharmacology [Internet]. Regitz-Zagrosek V, editor. Sex and Gender Differences in Pharmacology. 2012. 361 p. Available from: http://books.google.com/books?hl=en&lr=&id=J3VxihGDh9wC&oi=fnd&pg=PR5&dq=Sex+and+Gender+Differences+in+Pharmacology&ots=IdkJGzUYsk&sig=r0qg0Y-GDdroABvYpKCQ7lH9T8k%; http://link.springer.com/10.1007/978-3-642-30726-3.

  31. Garber J, Cobin R, Gharib H, Hennessey J, Klein I, Mechanick J, et al. Clinical practice guidelines for hypothyroidism in adults: cosponsored by the American Association of Clinical Endocrinologists and the American Thyroid Association. Endocr Pract. 2012;18(6):988–1028.

    Article  PubMed  Google Scholar 

  32. Samuels MH. Thyroid disease and cognition. Endocrinol Metab Clin North Am. 2014;43(2):529–43. http://dx.doi.org/10.1016/j.ecl.2014.02.006.

    Article  PubMed  Google Scholar 

  33. Henrichs J, Ghassabian A, Peeters RP, Tiemeier H. Maternal hypothyroxinemia and effects on cognitive functioning in childhood: how and why? Clin Endocrinol (Oxf). 2013;79(2):152–62.

    Article  Google Scholar 

  34. Hogervorst E, Huppert F, Matthews FE, Brayne C. Thyroid function and cognitive decline in the MRC cognitive function and ageing study. Psychoneuroendocrinology. 2008;33(7):1013–22.

    Article  PubMed  Google Scholar 

  35. Mennemeier M, Garner RD, Heilman KM. Memory, mood and measurement in hypothyroidism. J Clin Exp Neuropsychol. 1993;15(5):822–31.

    Article  PubMed  Google Scholar 

  36. Osterweil D, Syndulko K, Cohen SN, Pettier-Jennings PD, Hershman JM, Cummings JL, et al. Cognitive function in non-demented older adults with hypothyroidism. J Am Geriatr Soc. 1992;40(4):325–35.

    Article  PubMed  Google Scholar 

  37. Burmeister LA, Ganguli M, Dodge HH, Toczek T, Dekosky ST, Nebes RD. Hypothyroidism and cognition: preliminary evidence for a specific defect in memory. Thyroid. 2001;11(12):1177–85. http://www.liebertonline.com/doi/abs/10.1089/10507250152741037.

    Article  PubMed  Google Scholar 

  38. Botella-Carretero J, Galán J, Caballero C, Sancho J, Escobar-Morreale H. Quality of life and psychometric functionality in patients with differentiated thyroid carcinoma. Endocr Relat Cancer. 2003;10(4):601–10. http://www.ncbi.nlm.nih.gov/pubmed/14713270.

  39. Wekking EM, Appelhof BC, Fliers E, Schene AH, Huyser J, Tijssen JGP, et al. Cognitive functioning and well-being in euthyroid patients on thyroxine replacement therapy for primary hypothyroidism. Eur J Endocrinol. 2005;153(6):747–53.

    Article  PubMed  Google Scholar 

  40. Constant EL, Adam S, Seron X, Bruyer R, Seghers A, Daumerie C. Anxiety and depression, attention, and executive functions in hypothyroidism. J Int Neuropsychol Soc. 2005;11(05):535–44. http://www.journals.cambridge.org/abstract_S1355617705050642.

  41. Correia N, Mullally S, Cooke G, Tun TK, Phelan N, Feeney J, et al. Evidence for a specific defect in hippocampal memory in overt and subclinical hypothyroidism. J Clin Endocrinol Metab. 2009;94(10):3789–97.

    Article  PubMed  Google Scholar 

  42. Miller KJ, Parsons TD, Whybrow PC, Van Herle K, Rasgon N, Van Herle A, et al. Verbal memory retrieval deficits associated with untreated hypothyroidism. J Neuropsychiatry Clin Neurosci. 2007;19(2):132–6. http://www.ncbi.nlm.nih.gov/pubmed/17431058%; http://psychiatryonline.org/doi/abs/10.1176/jnp.2007.19.2.132.

  43. Beydoun MA, Beydoun HA, Rostant OS, Dore GA, Fanelli-Kuczmarski MT, Evans MK, et al. Thyroid hormones are associated with longitudinal cognitive change in an urban adult population. Neurobiol Aging. 2015;36(11):3056–66. http://dx.doi.org/10.1016/j.neurobiolaging.2015.08.002.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Reid RE, Kim EM, Page D, O’Mara SM, O’Hare E. Thyroxine replacement in an animal model of congenital hypothyroidism. Physiol Behav. 2007;91(2–3):299–303.

    Article  PubMed  Google Scholar 

  45. De Jong FJ, Den Heijer T, Visser TJ, De Rijke YB, Drexhage HA, Hofman A, et al. Thyroid hormones, dementia, and atrophy of the medial temporal lobe. J Clin Endocrinol Metab. 2006;91(7):2569–73.

    Article  PubMed  Google Scholar 

  46. Forti P, Olivelli V, Rietti E, Maltoni B, Pirazzoli G, Gatti R, et al. Serum thyroid-stimulating hormone as a predictor of cognitive impairment in an elderly cohort. Gerontology. 2012;58(1):41–9.

    Article  PubMed  Google Scholar 

  47. Tan ZS, Beiser A, Vasan RS, Auerbach S, Kiel DP, Wolf PA, et al. NIH public access. Arch Intern Med. 2009;168(14):1514–20.

    Article  Google Scholar 

  48. Jensovsky J, Ruzicka E, Spackova N, Hejdukova B. Changes of event related potential and cognitive processes in patients with subclinical hypothyroidism after thyroxine treatment. Endocr Regul. 2002;36(3):115–22.

    PubMed  Google Scholar 

  49. Monzani F, Del Guerra P, Caraccio N, Pruneti C, Pucci E, Luisi M, et al. Subclinical hypothyroidism: neurobehavioral features and beneficial effect of L-thyroxine treatment. Clin Investig. 1993;71(5):367–71.

    PubMed  Google Scholar 

  50. Nystrom E, Caidahl K, Fager G, Wikkelso C, Lundberg P, Lindstedt G. Double-blind cross-over 12-month study of L-thyroxine treatment of women with subclinical hypothyroidism. Clin Endocrinol (Oxf). 1988;29:63–75.

    Article  Google Scholar 

  51. Aghili R, Khamseh ME, Malek M, Hadian A, Baradaran HR, Najafi L, et al. Changes of subtests of Wechsler Memory Scale and cognitive function in subjects with subclinical hypothyroidism following treatment with levothyroxine. Arch Med Sci. 2012;8(6):1096–101.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Roberts LM, Pattison H, Roalfe A, Franklyn J, Wilson S, Hobbs FD, et al. Is subclinical thyroid dysfunction in the elderly associated with depression or cognitive dysfunction? Ann Intern Med. 2006;145(8):573–81. http://www.ncbi.nlm.nih.gov/pubmed/17043339.

    Article  PubMed  Google Scholar 

  53. De Jongh RT, Lips P, Van Schoor NM, Rijs KJ, Deeg DJH, Comijs HC, et al. Endogenous subclinical thyroid disorders, physical and cognitive function, depression, and mortality in older individuals. Eur J Endocrinol. 2011;165(4):545–54.

    Article  PubMed  Google Scholar 

  54. Gussekloo J, van Exel E, de Craen AJM, Meinders AE, Frölich M, Westendorp RGJ. Thyroid status, disability and cognitive function, and survival in old age. JAMA. 2004;292(21):2591–9. http://www.ncbi.nlm.nih.gov/pubmed/15572717.

    Article  PubMed  Google Scholar 

  55. Bell RJ, Rivera-Woll L, Davison SL, Topliss DJ, Donath S, Davis SR. Well-being, health-related quality of life and cardiovascular disease risk profile in women with subclinical thyroid disease—A community-based study. Clin Endocrinol (Oxf). 2007;66(4):548–56.

    Google Scholar 

  56. Engum A, Bjøro T, Mykletun A, Dahl A. An association between depression, anxiety and thyroid function—A clinical fact or an artefact? Acta Psychiatr Scand. 2002;106(1):27–34.

    Article  PubMed  Google Scholar 

  57. Jorde R, Waterloo K, Storhaug H, Nyrnes A, Sundsfjord J, Jenssen TG. Neuropsychological function and symptoms in subjects with subclinical hypothyroidism and the effect of thyroxine treatment. J Clin Endocrinol Metab. 2006;91(1):145–53.

    Article  PubMed  Google Scholar 

  58. Kong WM, Sheikh MH, Lumb PJ, Freedman DB, Crook M, Doré CJ, et al. A 6-month randomized trial of thyroxine treatment in women with mild subclinical hypothyroidism. Am J Med. 2002;112(5):348–54. http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed5&NEWS=N&AN=2002111425.

  59. Parle J, Roberts L, Wilson S, Pattison H, Roalfe A, Haque MS, et al. A randomized controlled trial of the effect of thyroxine replacement on cognitive function in community-living elderly subjects with subclinical hypothyroidism: the Birmingham elderly thyroid study. J Clin Endocrinol Metab. 2010;95(8):3623–32.

    Article  PubMed  Google Scholar 

  60. Gulseren S, Gulseren L, Hekimsoy Z, Cetinay P, Ozen C, Tokatlioglu B. Depression, anxiety, health-related quality of life, and disability in patients with overt and subclinical thyroid dysfunction. Arch Med Res. 2006;37(1):133–9.

    Article  PubMed  Google Scholar 

  61. Stagnaro-Green A. Overt hyperthyroidism and hypothyroidism during pregnancy. Clin Obstet Gynecol. 2011;54(3):478–87.

    Article  PubMed  Google Scholar 

  62. Lazarus JH, Bestwick JP, Channon S, Paradice R, Maina A, Rees R, et al. Antenatal thyroid screening and childhood cognitive function. N Engl J Med. 2011;366(6):1757–65.

    Google Scholar 

  63. Sutherland J, Esselborn V, Burket R, Skillman T, Benson JT. Familial nongoitrous cretinism apparently due to maternal antithyroid antibody: report of a family. N Engl J Med. 1960;263:336–41. https://www.nejm.org/doi/full/10.1056/NEJM196008182630703.

    Article  PubMed  Google Scholar 

  64. Connors MH, Styne DM. Transient neonatal ‘athyreosis’ resulting from thyrotropin-binding inhibitory immunoglobulins. Pediatrics. 1986;78(2):287–90. http://pediatrics.aappublications.org/content/78/2/287..info.

  65. Cho BY, Shong YKEE, Lee HKYU, Uppsalla P. Transient neonatal hypothyroidism due to transplacental transfer of maternal immunoglobulins that inhibit TSH binding, cAMP increase and cell growth. Department of Internal Medicine, College of Medicine, Seoul National University, Seoul, Korea; 1987. p. 110–744.

    Google Scholar 

  66. Fort P, Lifshitz F, Pugliese M, Klein I. Neonatal thyroid disease: differential expression in three successive offspring. J Clin Endocrinol Metab. 1988;66(3):645–7.

    Article  PubMed  Google Scholar 

  67. Goldsmith RE, McAdams AJ, Larsen PR, Mackenzie M, Hess EV. Familial autoimmune thyroiditis: maternal–fetal relationship and the role of generalized autoimmunity. J Clin Endocrinol Metab. 1973;37(2):265–75.

    Article  PubMed  Google Scholar 

  68. McCarrison R. The thyroid gland in health and disease. New York: William Wood & Company; 1917. http://www.archive.org/details/thyroidglandinheOOmcca.

  69. Matsuura N, Konishi J. Transient hypothyroidism in infants born to mothers with chronic thyroiditis—a nationwide study of twenty-three cases. The Transient Hypothyroidism Study Group. Endocrinol Jpn. 1990;37(3):369–79.

    Google Scholar 

  70. Haddow JE, Palomaki GE, Allan WC, Williams JR, Knight GJ, Gagnon J, et al. Maternal thyroid deficiency during pregnancy and subsequent neuropsychological development of the child. N Engl J Med. 1999;341(8):549–55. https://www.nejm.org/doi/pdf/10.1056/NEJM199908193410801.

    Article  PubMed  Google Scholar 

  71. Calvo R, Obregón M, del Rey F, de Escobar G. The rat placenta and the transfer of thyroid hormones from the mother to the fetus. Effects of maternal thyroid status. Endocrinology. 1992;131(1):357–65. https://watermark.silverchair.com/endo0357.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAcAwggG8BgkqhkiG9w0BBwagggGtMIIBqQIBADCCAaIGCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMmaqVeYWTFpFt5BmQAgEQgIIBc_AM6arFgUZbj9gsCkACNjY4EaKWQYzvaBjBokCLLCJgUF.

    Article  PubMed  Google Scholar 

  72. Smit BJ, Kok JH, Vulsma T, Briët JM, Boer K, Wiersinga WM. Neurologic development of the newborn and young child in relation to maternal thyroid function. Acta Paediatr Int J Paediatr. 2000;89(3):291–5.

    Article  Google Scholar 

  73. Li Y, Shan Z, Teng W, Yu X, Li Y, Fan C, et al. Abnormalities of maternal thyroid function during pregnancy affect neuropsychological development of their children at 25–30 months. Clin Endocrinol (Oxf). 2010;72(6):825–9.

    Article  Google Scholar 

  74. Pop VJ, Kuijpens JL, van Baar AL, Verkerk G, van Son MM, de Vijlder JJ, et al. Low maternal free thyroxine concentrations during early pregnancy are associated with impaired psychomotor development in infancy. Clin Endocrinol (Oxf). 1999;50(2):149–55. http://www.ncbi.nlm.nih.gov/pubmed/10396355.

    Article  PubMed  Google Scholar 

  75. Den Ouden A, Kok J, Verkerk P, Brand R, Verloove-Vanhorick S. The relation between neonatal thyroxine levels and neurodevelopmental outcome at age 5 and 9 years in a national cohort of very preterm and/or very low birth weight infants. Pediatr Res. 1996;39(1):142–5. http://ovidsp.tx.ovid.com/sp-3.31.1b/ovidweb.cgi?&S=PCKGFPLMEFDDLHBGNCEKHFLBHGHLAA00&Link+Set=S.sh.22%7C1%7Csl_10.

  76. Reuss ML, Paneth N, Pinto-Martin JA, Lorenz JM, Susser M. The relation of transient hypothyroxinemia in preterm infants to neurologic development at two years of age. N Engl J Med. 1996;334(13):821–7. http://www.nejm.org/doi/abs/10.1056/NEJM199603283341303.

    Article  PubMed  Google Scholar 

  77. Vulsma T, Kok J. Prematurity-associated neurologic and developmental abnormalities and neonatal thyroid function. Editorial. N Engl J Med. 1996;334(13):857–8. https://www.nejm.org/doi/pdf/10.1056/NEJM199603283341310.

    Article  PubMed  Google Scholar 

  78. Volpe JJ, Inder TE, Darras BT, de Vries LS, du Plessis AJ, Neil J, et al. Volpe’s neurology of the newborn, 6th ed. Philadelphia, PA: Elsevier Inc.; 2017. https://www.us.elsevierhealth.com/volpes-neurology-of-the-newborn-9780323428767.html#panel1.

  79. Pop VJ, Brouwers EP, Vader HL, Vulsma T, Van Baar AL, De Vijlder JJ. Maternal hypothyroxinaemia during early pregnancy and subsequent child development: a 3-year follow-up study. Clin Endocrinol (Oxf). 2003;59(3):282–8.

    Article  Google Scholar 

  80. Vermiglio F, Lo Presti VP, Moleti M, Sidoti M, Tortorella G, Scaffidi G, et al. Attention deficit and hyperactivity disorders in the offspring of mothers exposed to mild-moderate iodine deficiency: a possible novel iodine deficiency disorder in developed countries. J Clin Endocrinol Metab. 2004;89(12):6054–60.

    Article  PubMed  Google Scholar 

  81. Julvez J, Alvarez-Pedrerol M, Rebagliato M, Murcia M, Forns J, Garcia-Esteban R, et al. Thyroxine levels during pregnancy in healthy women and early child neurodevelopment. Epidemiology. 2013;24(1):150–7.

    Article  PubMed  Google Scholar 

  82. Berbel P, Mestre JL, Santamaría A, Palazón I, Franco A, Graells M, et al. Delayed neurobehavioral development in children born to pregnant women with mild hypothyroxinemia during the first month of gestation: the importance of early iodine supplementation. Thyroid. 2009;19(5):511–9. http://www.liebertonline.com/doi/abs/10.1089/thy.2008.0341.

    Article  PubMed  Google Scholar 

  83. Contempré B, Jauniaux E, Calvo R, Jurkovic D, Campbell S, de Escobar G. Detection of thyroid hormones in human embryonic cavities during the first trimester of pregnancy. J Clin Endocrinol Metab. 1993;17(6):1719–22. https://www.ncbi.nlm.nih.gov/pubmed/?term=Detection+of+thyroid+hormones+in+human+embryonic+cavities.

    Google Scholar 

  84. Delange F. Endemic cretinism. In: Werner SC, Ingbar SH, Braverman LE, Utiger RD, editors. Werner and Ingbar’s the thyroid: a fundamental and clinical text. 7th ed. Philadelphia, PA: Lippincott-Raven; 1996. p. 756–67.

    Google Scholar 

  85. Foley T. Congenital hypothyroidism. In: Werner SC, Ingbar SH, Braverman LE, Utiger RD, editors. Werner and Ingbar’s the thyroid: a fundamental and clinical text. 7th ed. Philadelphia, PA: Lippincott-Raven; 1996. p. 988–94.

    Google Scholar 

  86. Henrichs J, Bongers-Schokking JJ, Schenk JJ, Ghassabian A, Schmidt HG, Visser TJ, et al. Maternal thyroid function during early pregnancy and cognitive functioning in early childhood: the generation R study. J Clin Endocrinol Metab. 2010;95(9):4227–34.

    Article  PubMed  Google Scholar 

  87. Kooistra L, Crawford S, van Baar AL, Brouwers EP, Pop VJ. Neonatal effects of maternal hypothyroxinemia during early pregnancy. Pediatrics. 2006;117(1):161–7.

    Article  PubMed  Google Scholar 

  88. Mirabella G, Westall CA, Asztalos E, Perlman K, Koren G, Rovet J. Development of contrast sensitivity in infants with prenatal and neonatal thyroid hormone insufficiencies. Pediatr Res. 2005;57(6):902–7.

    Article  PubMed  Google Scholar 

  89. Ghassabian A, Bongers-Schokking JJ, Henrichs J, Jaddoe VWV, Visser TJ, Visser W, et al. Maternal thyroid function during pregnancy and behavioral problems in the offspring: the generation R study. Pediatr Res. 2011;69(5 PART 1):454–9.

    Article  PubMed  Google Scholar 

  90. Brent G. The molecular basis of thyroid hormone action. N Engl J Med. 1994;331(13):846–51. https://www.nejm.org/doi/pdf/10.1056/NEJM199409293311306.

  91. Glinoer D, Riahi M, Grun J, Kinthaert J. Risk of subclinical hypothyroidism in pregnant women with asymptomatic autoimmune thyroid disorders. J Clin Endocrinol Metab. 1994;79(1):197–204.

    PubMed  Google Scholar 

  92. Oken E, Braverman LE, Platek D, Mitchell ML, Lee SL, Pearce EN. Neonatal thyroxine, maternal thyroid function, and child cognition. J Clin Endocrinol Metab. 2009;94(2):497–503.

    Article  PubMed  Google Scholar 

  93. Chevrier J, Harley KG, Kogut K, Holland N, Johnson C, Eskenazi B. Maternal thyroid function during the second half of pregnancy and child neurodevelopment at 6, 12, 24, and 60 months of age. J Thyroid Res. 2011;2011.

    Google Scholar 

  94. Craig WY, Allan WC, Kloza EM, Pulkkinen AJ, Waisbren S, Spratt DI, et al. Mid-gestational maternal free thyroxine concentration and offspring neurocognitive development at age two years. J Clin Endocrinol Metab. 2012;97(1):22–8.

    Article  Google Scholar 

  95. Casey BM, Thom EA, Peaceman AM, Varner MW, Sorokin Y, Hirtz DG, et al. Treatment of subclinical hypothyroidism or hypothyroxinemia in pregnancy. N Engl J Med. 2017;376(9):815–25. https://www.nejm.org/doi/10.1056/NEJMoa1606205?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%3Dwww.ncbi.nlm.nih.gov.

  96. Lavado-Autric R, Ausó E, García-Velasco JV, Del Carmen Arufe M, Escobar del Rey F, Berbel P, et al. Early maternal hypothyroxinemia alters histogenesis and cerebral cortex cytoarchitecture of the progeny. J Clin Invest. 2003;111(7):1073–82. https://www.jci.org/articles/view/16262.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Ausó E, Lavado-Autric R, Cuevas E, Escobar Del Rey F, Morreale De Escobar G, Berbel P. A moderate and transient deficiency of maternal thyroid function at the beginning of fetal neocorticogenesis alters neuronal migration. Endocrinology. 2004;145(9):4037–47.

    Article  PubMed  Google Scholar 

  98. Cherella CE, Wassner AJ. Congenital hypothyroidism: insights into pathogenesis and treatment. Int J Pediatr Endocrinol. 2017;2017(11):1–8. http://ijpeonline.biomedcentral.com/articles/10.1186/s13633-017-0051-0.

  99. Deladoëy J, Ruel J, Giguère Y, Van Vliet G. Is the incidence of congenital hypothyroidism really increasing? a 20-year retrospective population-based study in Québec. J Clin Endocrinol Metab. 2011;96(8):2422–9.

    Article  PubMed  Google Scholar 

  100. Olivieri A, Fazzini C, Medda E, Hypothyroidism TISG for C. Multiple factors influencing the incidence of congenital hypothyroidism detected by neonatal screening. Horm Res Paediatr. 2015;83(2):86–93.

    Article  PubMed  Google Scholar 

  101. Wassner AJ, Brown RS. Congenital hypothyroidism: recent advances. Curr Opin Endocrinol Diabetes Obes. 2015;22(5):407–12.

    Article  PubMed  Google Scholar 

  102. Lanting CI, van Tijn DA, Loeber JG, Vulsma T, de Vijlder JJM, Verkerk PH. Clinical effectiveness and cost-effectiveness of the use of the thyroxine/thyroxine-binding globulin ratio to detect congenital hypothyroidism of thyroidal and central origin in a neonatal screening program. pediatrics. 2005;116(1):168–73. http://pediatrics.aappublications.org/content/116/1/168..info.

    Article  PubMed  Google Scholar 

  103. Van Tijn DA, De Vijlder JJM, Verbeeten B, Verkerk PH, Vulsma T. Neonatal detection of congenital hypothyroidism of central origin. J Clin Endocrinol Metab. 2005;90(6):3350–9.

    Article  PubMed  Google Scholar 

  104. Fisher DA, Dussault JH, Foley TP, Klein AH, LaFranchi S, Larsen PR, et al. Screening for congenital hypothyroidism: results of screening one million North American infants. J Pediatr. 1979;94(5):700–5.

    Article  PubMed  Google Scholar 

  105. Hanna CE, Krainz PL, Skeels MR, Miyahira RS, Sesser DE, LaFranchi SH. Detection of congenital hypopituitary hypothyroidism: ten-year experience in the Northwest Regional Screening Program. J Pediatr. 1986;109(6):959–64.

    Article  PubMed  Google Scholar 

  106. Persani L. Central hypothyroidism: pathogenic, diagnostic and therapeutic challenges. J Clin Endocrinol Metab. 2012;97(9):3068–78.

    Article  PubMed  Google Scholar 

  107. Nebesio TD, McKenna MP, Nabhan ZM, Eugster EA. Newborn screening results in children with central hypothyroidism. J Pediatr. 2010;156(6):990–3. http://dx.doi.org/10.1016/j.jpeds.2009.12.011.

    Article  PubMed  Google Scholar 

  108. Ford G, Lafranchi SH. Screening for congenital hypothyroidism: a worldwide view of strategies. Best Pract Res Clin Endocrinol Metab. 2014;28(2):175–87. http://dx.doi.org/10.1016/j.beem.2013.05.008.

    Article  Google Scholar 

  109. Schoenmakers N, Alatzoglou KS, Chatterjee VK, Dattani MT. Recent advances in central congenital hypothyroidism. J Endocrinol. 2015;227(3):R51–71.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Sun Y, Bak B, Schoenmakers N, Van Trotsenburg ASP, Oostdijk W, Voshol P, et al. Loss-of-function mutations in IGSF1 cause an X-linked syndrome of central hypothyroidism and testicular enlargement. Nat Genet. 2012;44(12):1375–81. http://dx.doi.org/10.1038/ng.2453.

  111. Persani L, Bonomi M. The multiple genetic causes of central hypothyroidism. Best Pract Res Clin Endocrinol Metab. 2017;31(2):255–63. http://dx.doi.org/10.1016/j.beem.2017.04.003.

    Article  Google Scholar 

  112. New England Congenital Hypothyroidism Collaborative. Elementary school performance of children with congenital hypothyroidism. New England Congenital Hypothyroidism Collaborative. J Pediatr. 1990;116(1):27–32. http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med3&AN=2295961%; http://202.120.227.56:3210/sfxlcl3?sid=OVID:medline&id=pmid:2295961&id=doi:&issn=0022-3476&isbn=&volume=116&issue=1&spage=27&pages=27-32&date=1990&title=Journal+of+Ped.

  113. Ilicki A, Larsson A. Psychological development at 7 years of age in children with congenital hypothyroidism: timing and dosage of initial treatment. Acta Paediatr Scand. 1991;80(2):199–204. https://www.ncbi.nlm.nih.gov/pubmed/?term=Psychological+development+at+7+years+of+age+in+children+with+congenital+hypothyroidism%3A+Timing+and+dosage+of+initial+treatment.

    Article  Google Scholar 

  114. Glorieux J, Dussault J, Van Vliet G. Intellectual development at age 12 years of children with congenital hypothyroidism diagnosed by neonatal screening. J Pediatr. 1992;121(4):581–4. https://www.sciencedirect.com/science/article/pii/S0022347605811503?via%3Dihub#aep-article-footnote-id1.

    Article  PubMed  Google Scholar 

  115. Kooistra L, Laane C, Vulsma T, Schellekens JM, van der Meere JJ, Kalverboer AF. Motor and cognitive development in children with congenital hypothyroidism: a long-term evaluation of the effects of neonatal treatment. J Pediatr. 1994;124(6):903–9.

    Article  PubMed  Google Scholar 

  116. Simons WF, Fuggle PW, Grant DB, Smith I. Intellectual development at 10 years in early treated congenital hypothyroidism. Arch Dis Child. 1994;71(3):232–4.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Rovet JF, Ehrlich RM. Long-term effects of L-thyroxine therapy for congenital hypothyroidism. J Pediatr. 1995;126(3):380–6.

    Article  PubMed  Google Scholar 

  118. Heyerdahl S. Treatment variables as predictors of intellectual outcome in children with congenital hypothyroidism. Eur J Pediatr. 1996;155(5):357–61. http://www.ncbi.nlm.nih.gov/pubmed/8741030.

    Article  PubMed  Google Scholar 

  119. Bargagna S, Canepa G, Costagli C, Dinetti D, Marcheschi M, Millepiedi S, et al. Neuropsychological follow-up in early-treated congenital hypothyroidism: a problem-oriented approach. Thyroid. 2000;10(3):243–9.

    Article  PubMed  Google Scholar 

  120. Rovet J, Ehrlich R, Sorbara D. Intellectual outcome in children with fetal hypothyroidism. J Pediatr. 1987;110(5):700–4.

    Article  PubMed  Google Scholar 

  121. Fuggle PW, Grant DB, Smith I, Murphy G. Intelligence, motor skills and behaviour at 5 years in early-treated congenital hypothyroidism. Eur J Pediatr. 1991;150(8):570–4. https://www.ncbi.nlm.nih.gov/pubmed/?term=Intelligence%2C+motor+skills+and+behaviour+at+5+years+in+early-treated+congenital+hypothryoidism.

    Article  PubMed  Google Scholar 

  122. Rovet JF, Ehrlich RM, Sorbara DL. Neurodevelopment in infants and preschool children with congenital hypothyroidism: etiological and treatment factors affecting outcome. J Pediatr Psychol. 1992;17(2):187–213.

    Article  PubMed  Google Scholar 

  123. Simons WF, Fuggle PW, Grant DB, Smith I. Educational progress, behaviour, and motor skills at 10 years in early treated congenital hypothyroidism. Arch Dis Child. 2007;1997:219–22.

    Google Scholar 

  124. LaFranchi S. Congenital hypothyroidism: a newborn screening success story? Endocrinologist. 1994;4(6):477–86.

    Article  Google Scholar 

  125. Lain SJ, Bentley JP, Wiley V, Roberts CL, Jack M, Wilcken B, et al. Association between borderline neonatal thyroid-stimulating hormone concentrations and educational and developmental outcomes: a population-based record-linkage study. Lancet Diabetes Endocrinol. 2016;4(9):756–65. http://dx.doi.org/10.1016/S2213-8587(16)30122-X.

    Article  Google Scholar 

  126. Walstad P, Gates C, Carlson E. Struma lymphomatosa (Hashimoto’ s disease). Calif Med. 1951;74(1):31–5. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1520811/pdf/califmed00235-0033.pdf.

  127. Caturegli P, De Remigis A, Rose NR. Hashimoto thyroiditis: clinical and diagnostic criteria. Autoimmun Rev. 2014;13(4–5):391–7. http://dx.doi.org/10.1016/j.autrev.2014.01.007.

    Article  PubMed  Google Scholar 

  128. Sinclair D. Clinical and laboratory aspects of thyroid autoantibodies. Annu Clin Biochem. 2006;43:173–83 http://journals.sagepub.com/doi/pdf/10.1258/000456306776865043.

    Article  PubMed  Google Scholar 

  129. Bothra N, Shah N, Goroshi M, Jadhav S, Padalkar S, Thakkar H, et al. Hashimoto’s thyroiditis: relative recurrence risk ratio and implications for screening of first-degree relatives. Clin Endocrinol (Oxf). 2017;87(2):201–6.

    Article  Google Scholar 

  130. Mincer DL, Jialal I. Thyroid, hashimoto thyroiditis. StatPearls Publ. 2017;(November 16). https://www.ncbi.nlm.nih.gov/books/NBK459262/.

  131. Parvathaneni A, Fischman D, Cheriyath P. Hashimoto’ s thyroiditis. In: Springer D, editor. A new look at hypothyroidism; 2012. p. 46–60. http://www.intechopen.com/books/a-new-look-at-hypothyroidism/hashimoto-s-disease.

  132. Zaletel K, Gaberscek S. Hashimotos thyroiditis: from genes to the disease. Curr Genomics. 2011;12(8):576–88. http://www.eurekaselect.com/openurl/content.php?genre=article&issn=1389-2029&volume=12&issue=8&spage=576.

  133. Wang C, Crapo LM. The epidemiology of thyroid disease and implications for screening. Epidemiol Clin Decis Mak. 1997;26(1):189–218.

    Google Scholar 

  134. Staii A, Mirocha S, Todorova-Koteva K, Glinberg S, Jaume JC. Hashimoto thyroiditis is more frequent than expected when diagnosed by cytology which uncovers a pre-clinical state. Thyroid Res. 2010;3(1):1–7.

    Article  Google Scholar 

  135. Brix TH, Kyvik KO, Hegedüs L. A population-based study of chronic autoimmune hypothyroidism in Danish twins. J Clin Endocrinol Metab. 2000;85(2):536–9.

    PubMed  Google Scholar 

  136. Hari Kumar KVS, Modi K. Twins and endocrinology. Indian J Endocrinol Metab. 2014;18(1):S48–52. http://www.ijem.in/text.asp?2014/18/7/48/145074.

    Article  Google Scholar 

  137. Villanueva R, Greenberg DA, Davies TF, Tomer Y. Sibling recurrence risk in autoimmune thyroid disease. Thyroid. 2003;13(8):761–4. http://www.liebertonline.com/doi/abs/10.1089/105072503768499653.

    Article  PubMed  Google Scholar 

  138. Marwaha RK, Sen S, Tandon N, Sahoo M, Walia RP, Singh S, et al. Familial aggregation of autoimmune thyroiditis in first-degree relatives of patients with juvenile autoimmune thyroid disease. Thyroid. 2003;13(3):297–300. http://www.liebertonline.com/doi/abs/10.1089/105072503321582114.

    Article  PubMed  Google Scholar 

  139. Nussinovitch U, Shoenfeld Y. The role of gender and organ specific autoimmunity. Autoimmun Rev. 2012;11(6–7):377–85.

    Article  Google Scholar 

  140. Gómez López E, Nso-Roca AP, Juste Ruiz M, Cortés Castell E. Enfermedad de Hashimoto en una cohorte de 29 niños y adolescentes. Epidemiología, evolución y comorbilidad a corto y largo plazo. Arch Argent Pediatr. 2018;116(1):56–8. http://www.sap.org.ar/docs/publicaciones/archivosarg/2018/v116n1a17.pdf.

  141. Zeitlin AA, Simmonds MJ, Gough SCL. Genetic developments in autoimmune thyroid disease: an evolutionary process. Clin Endocrinol (Oxf). 2008;68(5):671–82.

    Article  Google Scholar 

  142. Tomer Y, Huber A. The eitiology of autoimmune thyroid disease: a story of genes and environment. J Autoimmun. 2009;32(3–4):1–22. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3561494/pdf/nihms118814.pdf.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Janeway CAJ, Travers P, Walport M, Shlomchik M. The major histocompatibility complex and its functions. In: Immunobiology: the immune system in health and disease, 5th ed. New York: Garland Science; 2001. https://www.ncbi.nlm.nih.gov/books/NBK27156/.

  144. Huang H, Li X, Lin L, Shi Y, Lin X, Li L, et al. Upregulation of thyroid transcription factor-1 and human leukocyte antigen class I in Hashimoto’s disease providing a clinical evidence for possible triggering autoimmune reaction. Eur J Endocrinol. 2011;164(5):795–800.

    Article  PubMed  Google Scholar 

  145. Bottazzo GF, Dean BM, McNally JM, MacKay EH, Swift PG, Gamble DR. In situ characterization of autoimmune phenomena and expression of HLA molecules in the pancreas in diabetic insulitis. N Engl J Med. 1985;313(6):353–60. https://www.nejm.org/doi/pdf/10.1056/NEJM198508083130604.

    Article  PubMed  Google Scholar 

  146. Singer D, Kohn L, Zinger H, Mozes E. Methimazole prevents induction of experimental systemic lupus erythematosus in mice. J Immunol. 1994;153:873–80. http://www.jimmunol.org/content/153/2/873.short.

  147. Longhi MS, Ma Y, Mieli-Vergani G, Vergani D. Aetiopathogenesis of autoimmune hepatitis. J Autoimmun. 2010;34(1):7–14. http://dx.doi.org/10.1016/j.jaut.2009.08.010.

    Article  PubMed  Google Scholar 

  148. Tokić S, Štefanić M, Karner I, Glavaš-Obrovac L. Altered expression of CTLA-4, CD28, VDR, and CD45 mRNA in T cells of patients with Hashimoto’s thyroiditis—a pilot study. Endokrynol Pol. 2017;68(3):274–82. https://www.researchgate.net/publication/318022377_Altered_expression_of_CTLA-4_CD28_VDR_and_CD45_mRNA_in_T_cells_of_patients_with_Hashimoto’s_thyroiditis_-_a_pilot_study.

  149. Narooie-Nejad M, Taji O, Kordi Tamandani DM, Kaykhaei MA. Association of CTLA-4 gene polymorphisms −318C/T and +49A/G and Hashimoto’s thyroidits in Zahedan, Iran. Biomed Reports. 2017;6(1):108–12. https://www.spandidos-publications.com/.

    Article  PubMed  PubMed Central  Google Scholar 

  150. McLachlan SM, Rapoport B. Why measure thyroglobulin autoantibodies rather than thyroid peroxidase autoantibodies? Thyroid. 2004;14(7):510–20.

    Article  PubMed  Google Scholar 

  151. Burn GL, Svensson L, Sanchez-Blanco C, Saini M, Cope AP. Why is PTPN22 a good candidate susceptibility gene for autoimmune disease? FEBS Lett. 2011;585(23):3689–98. http://dx.doi.org/10.1016/j.febslet.2011.04.032.

    Article  PubMed  Google Scholar 

  152. Hu S, Rayman MP. Multiple nutritional factors and the risk of hashimoto’s thyroiditis. Thyroid. 2017;27(5):597–610. http://online.liebertpub.com/doi/10.1089/thy.2016.0635.

    Article  PubMed  Google Scholar 

  153. Duntas LH. Facteurs environnementaux et auto-immunité thyroïdienne. Ann Endocrinol (Paris). 2011;72(2):108–13. http://dx.doi.org/10.1016/j.ando.2011.03.019.

  154. Effraimidis G, Wiersinga WM. Mechanisms in endocrinology: autoimmune thyroid disease: old and new players. Eur J Endocrinol. 2014;170(6).

    Article  PubMed  Google Scholar 

  155. Köhrle J. Selenium and the thyroid. Curr Opin Endocrinol Diabetes Obes. 2015;22(5):392–401.

    Article  PubMed  Google Scholar 

  156. Ravanbod M, Asadipooya K, Kalantarhormozi M, Nabipour I, Omrani GR. Treatment of iron-deficiency anemia in patients with subclinical hypothyroidism. Am J Med. 2013;126(5):420–4. http://dx.doi.org/10.1016/j.amjmed.2012.12.009.

    Article  PubMed  Google Scholar 

  157. Barbesino G. Drugs affecting thyroid function. Thyroid. 2010;20(7):763–70. http://www.liebertonline.com/doi/abs/10.1089/thy.2010.1635.

    Article  PubMed  Google Scholar 

  158. Mandac JC, Chaudhry S, Sherman KE, Tomer Y. The clinical and physiological spectrum of interferon-alpha induced thyroiditis: toward a new classification. Hepatology. 2006;43(4):661–72.

    Article  PubMed  Google Scholar 

  159. Tomer Y, Blackard JT, Akeno N. Interferon alpha treatment and thyroid dysfunction. Endocrinol Metab Clin North Am. 2007;36(4):1051–66.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Desailloud R, Hober D. Viruses and thyroiditis: an update. Virol J. 2009;6.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Lazarus JH. Lithium and thyroid. Best Pract Res Clin Endocrinol Metab. 2009;23(6):723–33. http://dx.doi.org/10.1016/j.beem.2009.06.002.

    Article  Google Scholar 

  162. van Melick EJM, Wilting I, Meinders AE, Egberts TCG. Prevalence and determinants of thyroid disorders in elderly patients with affective disorders: lithium and nonlithium patients. Am J Geriatr Psychiatry. 2010;18(5):395–403. http://dx.doi.org/10.1097/JGP.0b013e3181c6584e.

  163. Chiu CC, Shen WW, Chen KP, Lu ML. Application of the Cockcroft-Gault method to estimate lithium dosage requirement. Psychiatry Clin Neurosci. 2007;61(3):269–74.

    Article  PubMed  Google Scholar 

  164. Ross DS. Radioiodine therapy for hyperthyroidism—NEJMct1007101. 2011;19(2):1–12. http://www.nejm.org/doi/pdf/10.1056/NEJMct1007101.

  165. Hyer S, Pratt B, Newbold K, Hamer C. Outcome of pregnancy after exposure to radioiodine in utero. Endocr Pract. 2011;(aop):1–10. http://journals.aace.com/doi/abs/10.4158/EP10237.RA.

  166. Fröhlich E, Wahl R. Thyroid autoimmunity: role of anti-thyroid antibodies in thyroid and extra-thyroidal diseases. Front Immunol. 2017;8(May).

    Google Scholar 

  167. Li Y, Bai Y, Liu Z, Ozaki T, Taniguchi E, Mori I, et al. Immunohistochemistry of IgG4 can help subclassify Hashimoto’s autoimmune thyroiditis. Pathol Int. 2009;59(9):636–41.

    Article  PubMed  Google Scholar 

  168. Stagnaro-Green A. Approach to the patient with postpartum thyroiditis. J Clin Endocrinol Metab. 2012;97(2):334–42.

    Article  PubMed  Google Scholar 

  169. Caturegli P, De Remigis A, Chuang K, Dembele M, Iwama A, Iwama S. Hashimoto’s thyroiditis: celebrating the centennial through the lens of the Johns Hopkins hospital surgical pathology records. Thyroid. 2013;23(2):142–50. http://online.liebertpub.com/doi/abs/10.1089/thy.2012.0554.

    Article  PubMed  PubMed Central  Google Scholar 

  170. De Luca F, Santucci S, Corica D, Pitrolo E, Romeo M, Aversa T. Hashimoto’s thyroiditis in childhood: presentation modes and evolution over time. Ital J Pediatr. 2013;39(1):1.

    Google Scholar 

  171. Caturegli P, Ruggere C. Thyroid history: Karl Hürthle! Now, who was he? Thyroid. 2005;15(2):121–3.

    Article  PubMed  Google Scholar 

  172. Iannaci G, Luise R, Sapere P, Coluccino V, Ronchi A, Faggiano A, et al. Fibrous variant of Hashimoto’s thyroiditis as a diagnostic pitfall in thyroid pathology. Case Rep Endocrinol. 2013;2013:308908. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3870128&tool=pmcentrez&rendertype=abstract.

  173. Luiz HV, Gonçalves D, Silva TN da, Nascimento I, Ribeiro A, Mafra M, et al. IgG4-related Hashimoto’s thyroiditis—a new variant of a well known disease. Arq Bras Endocrinol Metabol. 2014;58(8):862–8. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0004-27302014000800862&lng=en&tlng=en.

  174. Alexander I, Eckhart H, Hahn G, Strobel D. Hashitoxicosis—three cases and a review of the literature. Eur Endocrinol. 2008;4:70. http://www.touchendocrinology.com/articles/hashitoxicosis-three-cases-and-review-literature.

    Article  Google Scholar 

  175. Donner H, Braun J, Seidl C, Rau H. Codon 17 polymorphism of the cytotoxic T lymphocyte antigen 4 gene in Hashimoto’s thyroiditis and Addison’s disease. J Clin Endocrinol Metab. 1997;82(12):4130–2. http://jcem.endojournals.org/content/82/12/4130.short.

    Google Scholar 

  176. Braun J, Donner H, Siegmund T, Walfish PG, Usadel KH, Badenhoop K. CTLA-4 promoter variants in patients with Graves’ disease and Hashimoto’s thyroiditis. Tissue Antigens. 1998;51(5):563–6.

    Article  PubMed  Google Scholar 

  177. Yagyu H, Okada K, Sato S, Yamashita Y, Okada N, Osuga JI, et al. Pegylated interferon-α2b and ribavirin combination therapy induces Hashitoxicosis followed by type 1 diabetes mellitus. Diabetes Res Clin Pract. 2012;95(3):e52–4. http://dx.doi.org/10.1016/j.diabres.2011.11.016.

    Article  PubMed  Google Scholar 

  178. Bertrand A, Kostine M, Barnetche T, Truchetet ME, Schaeverbeke T. Immune related adverse events associated with anti-CTLA-4 antibodies: systematic review and meta-analysis. BMC Med. 2015;13(1):1–14. http://dx.doi.org/10.1186/s12916-015-0455-8.

  179. Sharma R, Di Dalmazi G, Caturegli P. Exacerbation of autoimmune thyroiditis by CTLA-4 blockade: a role for IFNγ-induced indoleamine 2, 3-dioxygenase. Thyroid. 2016;26(8):1117–24. http://online.liebertpub.com/doi/10.1089/thy.2016.0092.

    Article  PubMed  PubMed Central  Google Scholar 

  180. Brain L, Jellinek EH, Ball K. Hashimoto’s disease and encephalopathy. Lancet. 1966;307:512.

    Article  Google Scholar 

  181. Liyanage CK, Munasinghe TMJ, Paramanantham A. Steroid-responsive encephalopathy associated with autoimmune thyroiditis presenting with fever and confusion. Case Rep Neurol Med. 2017;2017:1–4. https://www.hindawi.com/journals/crinm/2017/3790741/.

    Article  Google Scholar 

  182. Ferracci F, Bertiato G, Moretto G. Hashimoto’s encephalopathy: epidemiologic data and pathogenetic considerations. J Neurol Sci. 2004;217(2):165–8.

    Article  PubMed  Google Scholar 

  183. Zhou JY, Xu B, Lopes J, Blamoun J, Li L. Hashimoto encephalopathy: literature review. Acta Neurol Scand. 2017;135(3):285–90.

    Article  PubMed  Google Scholar 

  184. Chong JY, Rowland LP, Utiger RD. Hashimoto encephalopathy: syndrome or myth? Arch Neurol. 2003;60:164–71. https://jamanetwork.com/journals/jamaneurology/fullarticle/783630.

    Article  PubMed  Google Scholar 

  185. Mocellin R, Walterfang M, Velakoulis D. Hashimoto’ s encephalopathy epidemiology, pathogenesis and management. CNS Drugs. 2007;21(10):799–811.

    Article  PubMed  Google Scholar 

  186. Monti G, Pugnaghi M, Ariatti A, Mirandola L, Giovannini G, Scacchetti S, et al. Non-convulsive status epilepticus of frontal origin as the first manifestation of Hashimoto’s encephalopathy. Epileptic Disord. 2011;13(3):253–8.

    PubMed  Google Scholar 

  187. Menon V, Subramanian K, Thamizh J. Psychiatric presentations heralding Hashimoto’s encephalopathy: a systematic review and analysis of cases reported in literature. J Neurosci Rural Pract. 2017;8(2):261–7. https://www.ncbi.nlm.nih.gov/pubmed/28479803/.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Jonklaas J, Bianco AC, Bauer AJ, Burman KD, Cappola AR, Celi FS, et al. Guidelines for the treatment of hypothyroidism: Prepared by the American Thyroid Association task force on thyroid hormone replacement. Thyroid. 2014;24(12):1670–751. http://online.liebertpub.com/doi/abs/10.1089/thy.2014.0028.

    Article  PubMed  PubMed Central  Google Scholar 

  189. Ventura M, Melo M, Carrilho F. Selenium and thyroid disease: from pathophysiology to treatment. Int J Endocrinol. 2017;2017.

    Google Scholar 

  190. McManus C, Luo J, Sippel R, Chen H. Is thyroidectomy in patients with Hashimoto thyroiditis more risky? J Surg Res. 2012;178(2):529–32.

    Article  PubMed  PubMed Central  Google Scholar 

  191. Laurent C, Capron J, Quillerou B, Thomas G, Alamowitch S, Fain O, et al. Steroid-responsive encephalopathy associated with autoimmune thyroiditis (SREAT): characteristics, treatment and outcome in 251 cases from the literature. Autoimmun Rev. 2016;15(12):1129–33. http://dx.doi.org/10.1016/j.autrev.2016.09.008.

    Article  PubMed  Google Scholar 

  192. Leyhe T, Müssig K, Weinert C, Laske C, Häring HU, Saur R, et al. Increased occurrence of weaknesses in attention testing in patients with Hashimoto’s thyroiditis compared to patients with other thyroid illnesses. Psychoneuroendocrinology. 2008;33(10):1432–6.

    Article  PubMed  Google Scholar 

  193. Leyhe T, Ethofer T, Bretscher J, Künle A, Säuberlich AL, Klein R, et al. Low performance in attention testing is associated with reduced grey matter density of the left inferior frontal gyrus in euthyroid patients with Hashimoto’s thyroiditis. Brain Behav Immun. 2013;27(1):33–7. http://dx.doi.org/10.1016/j.bbi.2012.09.007.

    Article  PubMed  Google Scholar 

  194. Koros C, Economou A, Mastorakos G, Bonakis A, Kalfakis N, Papageorgiou SG. A selective memory deficit caused by autoimmune encephalopathy associated with Hashimoto thyroiditis. Cogn Behav Neurol. 2012;25(3):144–8. https://journals.lww.com/cogbehavneurol/fulltext/2012/09000/A_Selective_Memory_Deficit_Caused_by_Autoimmune.6.aspx.

    Article  PubMed  Google Scholar 

  195. Giannouli V, Toulis KA, Syrmos N. Cognitive function in Hashimoto’ s thyroiditis under levothyroxine treatment. Hormones (Athens). 2014;13(3):430–3.

    Article  Google Scholar 

  196. Quinque EM, Karger S, Arélin K, Schroeter ML, Kratzsch J, Villringer A. Structural and functional MRI study of the brain, cognition and mood in long-term adequately treated Hashimoto’s thyroiditis. Psychoneuroendocrinology. 2014;42:188–98.

    Article  PubMed  Google Scholar 

  197. Bektas Uysal H, Ayhan M. Autoimmunity affects health-related quality of life in patients with Hashimoto’s thyroiditis. Kaohsiung J Med Sci. 2016;32(8):427–33. http://dx.doi.org/10.1016/j.kjms.2016.06.006.

    Article  PubMed  Google Scholar 

  198. Promberger R, Hermann M, Pallikunnel SJ, Seemann R, Meusel M, Ott J. Quality of life after thyroid surgery in women with benign euthyroid goiter: influencing factors including Hashimoto’s thyroiditis. Am J Surg. 2014;207(6):974–9. http://dx.doi.org/10.1016/j.amjsurg.2013.05.005.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sonia Y. Bernal or Michael R. Meager .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bernal, S.Y., Meager, M.R. (2019). Hypothyroidism and Hashimoto’s Thyroiditis: Mechanisms, Diagnosis, Neuropsychological Phenotypes, and Treatments. In: Armstrong, C., Morrow, L. (eds) Handbook of Medical Neuropsychology. Springer, Cham. https://doi.org/10.1007/978-3-030-14895-9_25

Download citation

Publish with us

Policies and ethics