Data Warehouse for the Monitoring and Analysis of Water Supply and Consumption

  • José Soares
  • Patrícia Leite
  • Paulo Teixeira
  • Nuno Lopes
  • Joaquim P. SilvaEmail author
Conference paper
Part of the Lecture Notes in Information Systems and Organisation book series (LNISO, volume 31)


Water is an essential resource that is increasingly scarce. Existing water supply networks are highly stressed due the increasing water consumption and the high quantity of water losses. In order to reduce water losses and improve water consumption management, EAmb—Esposende Ambiente, E.M. is implementing a data warehouse for storing water supply and consumption data. The available data will be used to monitor and analyze water supply and consumption in Esposende county.


Water supply system Data warehouse ETL process 


  1. Babovic, V., Drécourt, J.-P., Keijzer, M., & Friss Hansen, P. (2002). A data mining approach to modelling of water supply assets. Urban Water, 4(4), 401–414. Scholar
  2. Bougadis, J., Adamowski, K., & Diduch, R. (2005). Short-term municipal water demand forecasting. Hydrological Processes, 19(1), 137–148. Scholar
  3. ERSAR. (2017). Caraterização do setor de águas e resíduos (volume 1). Relatório Anual dos Serviços de Águas e Resíduos em Portugal. Retrieved from
  4. González-Gómez, F., García-Rubio, M. A., & Guardiola, J. (2011). Why is non-revenue water so high in so many cities? International Journal of Water Resources Development, 27(2), 345–360. Scholar
  5. Güngör-Demirci, G., Lee, J., Keck, J., Guzzetta, R., & Yang, P. (2018). Determinants of non-revenue water for a water utility in California. Journal of Water Supply: Research and Technology - Aqua, 67(3), 270–278. Scholar
  6. Jarke, M., Lenzerini, M., Vassiliou, Y., & Vassiliadis, P. (2000). Fundamentals of Data Warehouses. Heidelberg: Springer. Scholar
  7. Kanakoudis, V., Tsitsifli, S., Samaras, P., & Zouboulis, A. (2013). Assessing the performance of urban water networks across the EU Mediterranean area: The paradox of high NRW levels and absence of respective reduction measures. Water Science and Technology: Water Supply, 13(4), 939–950. Scholar
  8. Kimball, R., & Caserta, J. (2004). The Data Warehouse ETL toolkit: Practical techniques for extracting, cleaning conforming, and delivering data. Hoboken: Wiley. ISBN: 978-0764567575.Google Scholar
  9. Kimball, R., & Ross, M. (2013). The data warehouse toolkit: The complete guide to dimensional modeling (3rd ed.), Wiley. ISBN: 978-1118530801.Google Scholar
  10. Mounce, S. R., Boxall, J. B., & Machell, J. (2010). Development and verification of an online artificial intelligence system for detection of bursts and other abnormal flows. Journal of Water Resources Planning and Management, 136(3), 309–318. Scholar
  11. Mounce, S. R., & Machell, J. (2006). Burst detection using hydraulic data from water distribution systems with artificial neural networks. Urban Water Journal, 3(1), 21–31. Scholar
  12. Vilanova, M. R. N, Filho, P. M., & Balestieri, J. A. P. (2014, March 1). Performance measurement and indicators for water supply management: Review and international cases. Renewable and Sustainable Energy Reviews. Pergamon. Scholar
  13. OECD. (2016). Water governance in cities. OECD Publishing.
  14. Puust, R., Kapelan, Z., Savic, D. A., & Koppel, T. (2010). A review of methods for leakage management in pipe networks. Urban Water Journal, 7(1), 25–45. Scholar
  15. Thornton, J., Sturm, R., & Kunkel, G. A. (2008). Water loss control. New York: McGraw-Hill. ISBN: 978-0071499187.Google Scholar
  16. Wang, H. C., & Guo, J. L. (2013). Constructing a water quality 2.0 OLAP system in Taiwan. Journal of Cleaner Production, 40, 40–45. Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Instituto Politécnico Do Cávado E Do AveBarcelosPortugal

Personalised recommendations