Advertisement

Synthetic Biology: A Novel Approach for Pharmaceutically Important Compounds

  • Rashmi
  • Upendra Kumar
  • Poonam Maan
  • Priyanka 
Chapter
Part of the Fungal Biology book series (FUNGBIO)

Abstract

Synthetic biology is the new emerging discipline of science which combines principles of engineering with biology to redesign a living system to produce something it would not naturally produce. The living cells will alter through recombinant DNA technology to meet specific purposes. Since, fungi are themselves established cell factories in pharmaceutical industry. The versatile chemical entities secreted by these organisms have tremendous benefits. The need of the hour is to club synthetic biology and mycology to enhance gains. The great success of synthetic biology in the field of bio-production with the success story of artemisinin will likely influence the early stages of drug discovery. Next future interests are likely in the rational design of new biochemicals through genetic shuffling of biosynthetic modules in order to be compliant with large-scale production within microorganisms. However, it is also possible to anticipate technical constraints (current efficiency) as the majority of work performed in synthetic biology is in basic science rather than applied science to understand fundamental processes. Majority of projects were centered on developing new experimental and computational tools, using synthetic biology to understand how organism work or to generate minimal cells that can be counted as time constraint as it is also evident in case of semi-artiseminin where it took 10 long years. New molecular compounds as well as hosts were formed and manipulated for human benefit. Engineered systems are rapidly becoming a reality which is based on advances in our ability to edit genome and identify and optimize biosynthetic building blocks. This can help in creating a library of new pathways and novel compounds. But at the same time, ethical issues centered about the complete engineering of a new living organism or redesigning of existing species caught negative attention. It may or may not create problem but danger of evolving a new virulent strains always crossed in mind. Anyways, bolder initiatives are needed in funding for using this technology as it will be benefitted by the advancement of computational and engineering technology which in the future will move many more examples.

Keywords

Bioengineering Cell factories Artiseminin Taxol® 

Notes

Acknowledgments

The authors are grateful to the Department of Molecular Biology, Biotechnology & Bioinformatics, CCS Haryana Agricultural University, Hisar; and Department of Genetics & Plant Breeding, GB Pant University of Agriculture & Technology, Pantnagar for providing the facilities and financial support, to undertake the investigations. There are no conflicts of interest.

References

  1. Adrio JL, Demain AL (2003) Fungal biotechnology. Int Microbiol 6:191–199CrossRefGoogle Scholar
  2. Ajikuar PK, Xiao WH, Tyo KEJ, Wang Y, Simeon F, Leonard E, Mucha O, Phon TH, Pfeifer B, Steohanopoulos (2010) Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science 330:70–73CrossRefGoogle Scholar
  3. Andrianantoandro E, Basu S, Karig DK, Weiss R (2006) Synthetic biology: new engineering rules for an emerging discipline. Mol Syst Biol 2:0028CrossRefGoogle Scholar
  4. Awan AR, Blount BA, Bell DJ, Shaw WM, McKiernan RM, Ellis T (2017) Biosynthesis of the antibiotic nonribosomal peptide penicillin in baker’s yeast. Nat Commun 8:15202CrossRefGoogle Scholar
  5. Barrios-Gonz AJ, Miranda RU (2010) Biotechnological production and applications of statins. Appl Microbiol Biotechnol 85:869–883CrossRefGoogle Scholar
  6. Ben-Ari G, Zenvirth D, Sherman A, David L, Klutstein M, Layi U, Hillel J, Simchen G (2006) Four linked genes participate in controlling sporulation efficiency in budding yeast. PLoS Genet 2:e195CrossRefGoogle Scholar
  7. Berdy J (2005) Bioactive microbial metabolites. J Antibiot 58:1–26CrossRefGoogle Scholar
  8. Bertea CM (2005) Identification of intermediates and enzymes involved in the early steps of artemisinin biosynthesis in Artemisia annua. Planta Med 71:40–47CrossRefGoogle Scholar
  9. Bertea CM, Voster A, Verstappen FW, Mattei M, Beekwilder J, Bouwmeester HJ (2006) Isoprenoid biosynthesis in Artemisia cloning: Cloning and heterologous expression of a germocrene A synthase from a glandular trichome DNA library. Arch Biochem Biophys 448(1–2):3–12Google Scholar
  10. Bouwmeester HJ, Wallaart TE, Janssen MH, van Loo B, Jansen BJ, Posthumus MA, Schmidt CO, De Kraker JW, König WA, Franssen MC (1999) Amorpha-4,11-diene synthase catalyses the first probable step in artemisinin biosynthesis. Phytochemistry 52:843–854CrossRefGoogle Scholar
  11. Breitling R, Takano E (2015) Synthetic biology advances for pharmaceutical production. Curr Opin Biotechnol 35C:46–51CrossRefGoogle Scholar
  12. Brown GD (2010) The biosynthesis of artemisinin (Qinghaosu) and the phytochemistry of Artemisia annua L. (Qinghao). Molecules 15:7603–7698CrossRefGoogle Scholar
  13. Chakravarthi BV, Das P, surendranath K, Karande AA, Jayabaskaran C (2008) Production of paclitaxel by Fusarium solani isolated from Taxus celebica. J Biosci 33:259–267CrossRefGoogle Scholar
  14. Covello PS, Teoh KH, Polichuk DR, Reed DW, Nowak G (2007) Functional genomics and the biosynthesis of artemisinin. Phytochemistry 68:1864–1871CrossRefGoogle Scholar
  15. Croteau R, Raymond E, Ketchum B, Long RM, Kaspera R (2006) Wildung. Taxol biosynthesis and molecular genetics Phytochem Rev 5:75–97PubMedGoogle Scholar
  16. Currie JN (1917) The citric acid fermentation of Aspergillus Niger. J Biol Chem 31:15Google Scholar
  17. DeJong JM, Liu Y, Bollon AP, Long RM, Jennewein S, Williams D, Croteau RB (2005) Genetic engineering of Taxol biosynthetic genes in Saccharamyces cereviseae. Biotechnol Bioeng 93:221–224Google Scholar
  18. Engels B, Dahm P, Jennewein S (2008) Metabolic engineering of taxadiene biosynthesis in yeast as a first step towards Taxol (paclitaxel) production. Metab Eng 10:201–206CrossRefGoogle Scholar
  19. Finkelstein E, Amichai B, Grunwald MH (1996) Griseofulvin and its uses. Int J Antimicrob Agents 6:189–194CrossRefGoogle Scholar
  20. Flores-Bustamante ZR, Rivera-Orduña FN, Martínez-Cárdenas A, Flores-Cotera LB (2010) Microbial paclitaxel: advances and perspectives. J Antibiot 63:460–467CrossRefGoogle Scholar
  21. Frasch HJ, Medema MH, Takano E, Breitling R (2013) Design based reengineering of biosynthetic gene clusters: plug-and-play-in practice. Curr Opin Biotechnol 24:1144–1150CrossRefGoogle Scholar
  22. Garyali S, Kumar A, Reddy MS (2013) Taxol production by an endophytic fungus, Fusarium redolens, isolated from Himalayan yew. J Microbiol Biotechnol 23:1372–1138CrossRefGoogle Scholar
  23. Guo BH, Wang YC, Zhou XW, Hu K, Tan F, Miao ZQ, Tang KX (2006) An endophytic Taxol-producing fungus BT2 isolated from Taxuschinensis var. mairei. Afr J Biotechnol 5:875–877Google Scholar
  24. Hao X (2013) Taxol producing fungi. In: Ramawat KG, Merillon JM (eds) Natural products. Springer-Verlag, pp 2797–2812Google Scholar
  25. Hawkins KM, Smolke CD (2008) Production of benzylisoquinoline alkaloids in Saccharomyces cerevisiae. Nature Chem Biol 4:564–573CrossRefGoogle Scholar
  26. Hayden EC (2014) Synthetic biology firms shift focus. Nature 505:598CrossRefGoogle Scholar
  27. Helfrich EJN, Reiter S, Piel J (2014) Recent advances in genome based polyketide discovery. Curr Opin Biotechnol 29:107–115CrossRefGoogle Scholar
  28. Huang Q, Roessner CA, Croteau R, Scott AI (2001) Engineering Escherichia coli for the synthesis of Taxadiene, a key intermediate in the biosynthesis of Taxol. Biorg Med Chem 9:2237–2242CrossRefGoogle Scholar
  29. Jaitzig J, Li J, Sussmuth RD, Neubauer P (2014). Reconstituted biosynthesis nonribosomal macrolactone antibiotic valinomycin in E.coli. Acs Synth Biol 18;3(7):432–438Google Scholar
  30. Jennewein S, Croteau R (2001) Taxol biosynthesis: molecular genetics and biotechnological applications. Appl Microbiol Biotechnol 57:13–19CrossRefGoogle Scholar
  31. Jiang M, Stephanopoulos G, Pfeifer BA (2012) Downstream reactions and engineering in the microbially reconstituted pathway for Taxol. Appl Microbiol Biotechnol 94:841–849CrossRefGoogle Scholar
  32. Kai Z, Ping W, Zhang L, Liu J, Lin Y, Jin T, Zhou D (2008) Screening and breeding of high Taxol producing fungi by genome shuffling. Sci China C Life Sci 51:222–231CrossRefGoogle Scholar
  33. Kinoshita S, Udaka S, Shimino M (1957) Studies on the amino acid fermentation. Part I. Production of L-glutamic acid by various organisms. J Gen Appl Microbiol 3:193–205CrossRefGoogle Scholar
  34. Kitano H (2002) Computational systems biology. Nature 420:206–210CrossRefGoogle Scholar
  35. Komatsu M, Komatsu K, Koiwai H, Yamada Y, Kozone I, Izumikawa M, Hashimoto J, Takagi M, Omura S, Shin-Ya K (2013) Engineered Streptomyces avermitilis host for heterologous expression of biosynthetic gene cluster for secondary metabolites. ACS Synth Biol 2013(2):384–396CrossRefGoogle Scholar
  36. Lee TS, Khosla C, Tang Y (2005) Engineered biosynthesis of aklanonic acid analogues. J Am Chem Soc 127:12254–12262CrossRefGoogle Scholar
  37. Martin VJ, Pitera DJ, Withers ST, Newman JD, Keasling JD (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nature Biotech 21:796–802CrossRefGoogle Scholar
  38. Medema MH, Breitling R, Bovenberg R, Takano E (2011) Exploiting plug-and-play synthetic biology for drug discovery and production in microorganisms. Nat Rev Microbiol 9:131–137CrossRefGoogle Scholar
  39. Medema MH, Kottmann R, Yilmaz P (2015) Minimum information about a biosynthetic gene cluster. Nat Chem Biol 11(9):625–631CrossRefGoogle Scholar
  40. Meng H, Wang Y, Hua Q, Zhang S, Wang X (2011) In silico analysis and experimental improvement of taxadiene heterologous biosynthesis in Escherichia coli. Biotechnol Bioprocess Eng 16:205–215CrossRefGoogle Scholar
  41. Miao Z, Wang Y, Yu X, Guo B, Tang K (2009) New endophytic taxane production fungus from T. chinensis. Appl Biochem Microbiol 45:81–86CrossRefGoogle Scholar
  42. Minami H, Kim JS, Ikezawa N, Takemura T, Katayama T, Kumagai H, Sato F (2008) Microbial production of plant benzylisoquinoline alkaloids. Proc Natl Acad Sci U S A 105:7393–7398CrossRefGoogle Scholar
  43. Mutka SC, Carney JR, Liu Y, Kennedy J (2006) Heterologous production of epothilone C and D in Escherichia coli. Biochemistry 45:1321–1313CrossRefGoogle Scholar
  44. Naesby M, Nielsen SV, Nielsen CA, Green T, Tange TO, Simón E (2009) Yeast artificial chromosomes employed for random assembly of biosynthetic pathways and production of diverse compounds in Saccharomyces cerevisiae. Microb Cell Factories 8:45CrossRefGoogle Scholar
  45. Nielsen J, Keasling JD (2016) Engineering Cellular Metabolism Cell 164:1185–1197PubMedGoogle Scholar
  46. Nikel PI (2014) Martı’nez-Garcı’a E, De Lorenzo V. Biotechnological domestication of pseudomonads using synthetic biology Nat Rev Microbiol 12:368–379PubMedGoogle Scholar
  47. Paddon CJ, Keasling JD (2014) Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. Nat Rev Microbiol 12(5):355CrossRefGoogle Scholar
  48. Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D, Leavell MD, Tai A, Main A, Eng D (2013) High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496:528–532CrossRefGoogle Scholar
  49. Pfeifer B, Hu Z, Licari P, Khosla C (2002) Process and metabolicstrategies for improved production of Escherichia coli-derived 6-deoxyerythronolide B. Appl Environ Microbiol 68:3287–3292CrossRefGoogle Scholar
  50. Pfeifer BA, Admiraal SJ, Gramajo H, Cane DE, Khosla C (2001) Biosynthesis of complex polyketides in a metabolically engineered strain of E. coli. Science 291:1790–1792CrossRefGoogle Scholar
  51. Pitera DJ, Paddon CJ, Newman JD, Keasling JD (2007) Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli. Metab Eng 9:193–207CrossRefGoogle Scholar
  52. Reiling KK, Yoshikuni Y, Martin VJ, Newman J, Bohlmann J, Keasling JD (2004) Mono and diterpene production in Escherichia coli. Biotechnol Bioeng 87:200–212CrossRefGoogle Scholar
  53. Ro DK, Yoshikuni Y, Martin VJ, Newman J, Bohlmann J, Keasling JD (2008) Induction of multiple pleiotropic drug resistance genes in yeast engineered to produce an increased level of anti-malarial drug precursor, artemisinic acid. BMC Biotechnol 8:83CrossRefGoogle Scholar
  54. Rude MA, Khosla C (2006) Production of ansamycin polyketide precursors in Escherichia coli. J Antibiot 59:464–470CrossRefGoogle Scholar
  55. Rugbjerg P, Naesby M, Mortensen UH, Frandsen RJN (2013) Reconstruction of the biosynthetic pathway for the core fungal polyketide scaffold rubrofusarin in Saccharomyces cerevisiae. Microb Cell Factories 12:31.  https://doi.org/10.1186/1475-2859-12-31CrossRefGoogle Scholar
  56. Shao Z, Rao G, Li C, Abil Z, Luo Y, Zhao H (2013) Refactoring the silent spectinabilin gene cluster using a plug-and-play scaffold. ACS Synth Biol 2:662–669CrossRefGoogle Scholar
  57. Staniek A, Bouwmeester H, Fraser PD, Kayser O, Martens S, Tissier A, van der Krol S, Wessjohann L, Warzecha H (2013) Natural products-modifying metabolite pathways in plants. Biotechnol J 8:1159–1171CrossRefGoogle Scholar
  58. Staniek A, Woerdenbag HJ, Kayser O (2009) Taxomycesandreanae: a presumed paclitaxel producer demystified. Planta Med 75:1561–1566CrossRefGoogle Scholar
  59. Stassen PM, Kallenberg CGM, Stegeman CA (2007) Use of mycophenolic acid in non-transplant renal diseases. Nephrol Dial Transpl 22:101–109CrossRefGoogle Scholar
  60. Sun H, Liu Z, Zhao H, Ang EL (2015) Recent advances in combinatorial biosynthesis for drug discovery. Drug Des Devel Ther 9:823–833PubMedPubMedCentralGoogle Scholar
  61. Suryanarayanan TS, Thirunavukkarasu N, Govindarajulu MB, Sasse F, Jansen R, Murali TS (2009) Fungal endophytes and bioprospecting. Fungal Biol Rev 23:9–19CrossRefGoogle Scholar
  62. Teoh KH, Polichuk DR, Reed DW, Covello PS (2009) Molecular cloning of an aldehyde dehydrogenase implicated in artemisinin biosynthesis in Artemisia annua. Botany 87:635–642CrossRefGoogle Scholar
  63. Thykaer J, Nielsen J (2003) Metabolic engineering of beta-lactam production. Metab Eng 5:56–69CrossRefGoogle Scholar
  64. Trosset JY, Carbonell P (2015) Synthetic biology for pharmaceutical drug discovery. Drug Des Devel Ther 3(9):6285–6302Google Scholar
  65. vanDijken JP, Bauer J, Brambilla L, Duboc P, Francois JM, Gancedo C (2000) An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains. Enzym Microb Technol 26:706–714CrossRefGoogle Scholar
  66. Walker K, Croteau R (2001) Taxol biosynthetic genes. Phytochemistry 58:1–7CrossRefGoogle Scholar
  67. Watanabe K, Rude MA, Walsh CT, Khosla C (2003) Engineered biosynthesis of an ansamycinpolyketide precursor in Escherichia coli. Proc Natl Acad Sci U S A 100:9774–9778CrossRefGoogle Scholar
  68. Wei Y, Liu L, Zhou X, Lin J, Sun X, Tang K (2012) Engineering Taxol biosynthetic pathway for improving Taxol yield in Taxol-producing endophytic fungus EFY-21 (Ozonium sp.). Afr J Biotechnol 11:9094–9101Google Scholar
  69. Westfall PJ, Pitera DJ, Lenihan JR, Eng D, Woolard FX, Regentin R (2012) Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proc Natl Acad Sci U S A 109:E111–E118CrossRefGoogle Scholar
  70. White NJ (2008) Qinghaosu (artemisinin): the price of success. A review of the history and properties of artemisinin. Science 320:330–334CrossRefGoogle Scholar
  71. Wilson MC, Piel J (2013a) Metagenomic approaches for exploiting uncultivated bacteria as a resource for novel biosynthetic enzymology. Chem Biol 20:636–647CrossRefGoogle Scholar
  72. Wilson MC, Piel J (2013b) Metagenomic approaches for exploiting uncultivated bacteria as a resource for novel biosynthetic enzymology. Chem Boil 20:636–647CrossRefGoogle Scholar
  73. Wilson SA, Cummings EM, Roberts SC (2014) Multi-scale engineering of plant cell cultures for promotion of specialized metabolism. Curr Opin Biotechnol 29:163–170CrossRefGoogle Scholar
  74. Xiong ZQ, Yang YY, Zhao N, Wang Y (2013) Diversity of endophytic fungi and screening of fungal paclitaxel producer from Anglojap yew, Taxus x media. BMC Microbiol.  https://doi.org/10.1186/1471-2180-13-71
  75. Yang Y, Zhao H, Barrero RA, Zhang B, Sun G, Wilson IW, Xie F, Walker KD (2014) Genome sequencing and analysis of the paclitaxel-producing endophytic fungus Penicillium aurantiogriseum NRRL 62431. BMC Gen 15:69.  https://doi.org/10.1186/1471-2164-15-69CrossRefGoogle Scholar
  76. Zhang P, Zhou PP, Yu LJ (2009) An endophytic Taxol-producing fungus from Taxus x media, Aspergillus candidus MD3. FEMS Microbiol Lett 293:155–159CrossRefGoogle Scholar
  77. Zhang W, Li Y, Tang Y (2008) Engineered biosynthesis of bacterial aromatic polyketides in Escherichia coli. Proc Natl Acad Sci U S A 105:20683–20688CrossRefGoogle Scholar
  78. Zhao L, Chang WC, Xiao Y, Liu HW, Liu P (2013) Methylerythritol phosphate pathway of isoprenoid biosynthesis. Annu Rev Biochem 82:497–530CrossRefGoogle Scholar
  79. Zhu F, Zhong X, Hu M, Lu L, Deng Z, Liu T (2014) In vitro reconstitution of mevalonate pathway and targeted engineering of farnesene overproduction in Escherichia coli. Biotechnol Bioeng 111:1396–1405CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Rashmi
    • 1
  • Upendra Kumar
    • 2
  • Poonam Maan
    • 3
  • Priyanka 
    • 4
  1. 1.Department of Genetics & Plant BreedingCollege of Agriculture, G. B. Pant University of Agriculture and TechnologyPantnagarIndia
  2. 2.Department of Molecular Biology, Biotechnology & BioinformaticsCollege of Basic Sciences & Humanities, CCS Haryana Agricultural UniversityHisarIndia
  3. 3.Department of Agriculture BiotechnologyCollege of Agriculture, SVBP University of Agriculture & TechnologyMeerutIndia
  4. 4.Department of BotanyGovernment Girls Degree CollegeMeerutIndia

Personalised recommendations