Advertisement

Agriculturally and Industrially Important Fungi: Current Developments and Potential Biotechnological Applications

  • Divjot Kour
  • Kusam Lata Rana
  • Neelam Yadav
  • Ajar Nath YadavEmail author
  • Joginder Singh
  • Ali A. Rastegari
  • Anil Kumar Saxena
Chapter
Part of the Fungal Biology book series (FUNGBIO)

Abstract

With the expanding population, the environment is changing greatly, and agriculture is one of the most exposed sectors to these changes and faces a number of challenges like pollution, pathogenic attack, salinity, drought, high and low temperature, and so on. All these challenges ultimately affect productivity. To overcome such issues, eco-friendly approaches are very vital. The use of fungi as biofertilizers is one emerging area which is getting greater attention as it is proving its importance by enhancing plant growth and productivity by diverse plant growth-promoting traits including production of phytohormones, siderophores, and hydrolytic enzymes; making available different nutrients; and protecting plants against pathogens. Further, fungi are also becoming a center of focus for the industrial sector as fungal enzymes play a chief role in industries and their requirement is at the top position and in fact their influence will be felt more in coming years. Thus, keeping in view the importance of fungi especially for the agriculture as well as industrial sector, the following chapter has been designed which will take into consideration the plant growth-promoting traits of fungi, role of fungi in abiotic stress tolerance, value-added products from fungi, use of fungal enzymes in diverse industries, and fungi as a source of various secondary metabolites.

Keywords

Abiotic stress Fungal enzymes Plant growth promotion Secondary metabolites Value-added products 

Notes

Acknowledgement

The authors are grateful to Prof. Harcharan Singh Dhaliwal, Vice Chancellor, Eternal University, Baru Sahib, Himachal Pradesh, India, for providing infrastructural facilities and constant encouragement.

References

  1. Abada EA (2019) Application of microbial enzymes in the dairy industry. In: Kuddus M (ed) Enzymes in food biotechnology. Academic Press, Cambridge, pp 61–72.  https://doi.org/10.1016/B978-0-12-813280-7.00005-0CrossRefGoogle Scholar
  2. Abadulla E, Tzanov T, Costa S, Robra K-H, Cavaco-Paulo A, Gübitz GM (2000) Decolorization and detoxification of textile dyes with a laccase from Trametes hirsuta. Appl Environ Microbiol 66:3357–3362CrossRefPubMedPubMedCentralGoogle Scholar
  3. Adeyemi AO, Gadd GM (2005) Fungal degradation of calcium-, lead-and silicon-bearing minerals. Biometals 18:269–281CrossRefPubMedGoogle Scholar
  4. Adriano DC (2001) Trace elements in terrestrial environments: biogeochemistry, bioavailability, and risks of metals, 2nd edn. Springer-Verlag, New YorkCrossRefGoogle Scholar
  5. Afinah S, Yazid A, Anis Shobirin M, Shuhaimi M (2010) Phytase: application in food industry. Int Food Res J 17:13–21Google Scholar
  6. Ahlawat S, Dhiman SS, Battan B, Mandhan R, Sharma J (2009) Pectinase production by Bacillus subtilis and its potential application in biopreparation of cotton and micropoly fabric. Process Biochem 44:521–526CrossRefGoogle Scholar
  7. Akhtar MS, Siddiqui ZA (2008) Arbuscular mycorrhizal fungi as potential bioprotectants against plant pathogens. In: Siddiqui ZA, Akhtar MS, Futai K (eds) Mycorrhizae: sustainable agriculture and forestry. Springer Netherlands, Dordrecht, pp 61–97.  https://doi.org/10.1007/978-1-4020-8770-7_3CrossRefGoogle Scholar
  8. Akhtar MW, Mirza AQ, Nawazish MN, Chughtai M (1983) Effect of triglycerides on the production of lipids and lipase by Mucor hiemalis. Can J Microbiol 29:664–669CrossRefPubMedGoogle Scholar
  9. Akimoto M, Nagashima Y, Sato D (1999) A kinetic study on lipase-catalyzed interesterification of soybean oil with oleic acid in a continuous packed-bed reactor. Appl Biochem Biotechnol 81:131–142CrossRefPubMedGoogle Scholar
  10. Albersheim P (1966) Pectin lyase from fungi. Methods Enzymol 8:628–631CrossRefGoogle Scholar
  11. Al-Daamy A, Ahmed A, Mohammad G (2018) Antimicrobial agents production by fungi isolates from the whisperers. Sci J Med Res 2:104–107Google Scholar
  12. Al-Enazi NM, Awaad AS, Al-Othman MR, Al-Anazi NK, Alqasoumi SI (2018) Isolation, identification and anti-candidal activity of filamentous fungi from Saudi Arabia soil. Saudi Pharma J 26:253–257CrossRefGoogle Scholar
  13. Alkorta I, Garbisu C, Llama MJ, Serra JL (1998) Industrial applications of pectic enzymes: a review. Process Biochem 33:21–28CrossRefGoogle Scholar
  14. Alloway BJ (2008) Micronutrients and crop production: an introduction. In: Alloway BJ (ed) Micronutrient deficiencies in global crop production. Springer, Dordrecht, pp 1–39.  https://doi.org/10.1007/978-1-4020-6860-7_1CrossRefGoogle Scholar
  15. Altomare C, Norvell W, Björkman T, Harman G (1999) Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22. Appl Environ Microbiol 65:2926–2933PubMedPubMedCentralGoogle Scholar
  16. Anandan D, Marmer WN, Dudley RL (2007) Isolation, characterization and optimization of culture parameters for production of an alkaline protease isolated from Aspergillus tamarii. J Ind Microbiol Biotechnol 34:339–347CrossRefPubMedPubMedCentralGoogle Scholar
  17. Anbu P, Gopinath SC, Chaulagain BP, Tang T-H, Citartan M (2015) Microbial enzymes and their applications in industries and medicine 2014. Biomed Res Int.  https://doi.org/10.1155/2015/816419
  18. Anwar MS, Siddique MT, Verma A, Rao YR, Nailwal T, Ansari M, Pande V (2014) Multitrait plant growth promoting (PGP) rhizobacterial isolates from Brassica juncea rhizosphere: keratin degradation and growth promotion. Commun Integr Biol 7:e27683CrossRefPubMedPubMedCentralGoogle Scholar
  19. Aravindan R, Anbumathi P, Viruthagiri T (2007) Lipase applications in food industry. Indian J Biotechnol 6:141–158Google Scholar
  20. Archer DB (2000) Filamentous fungi as microbial cell factories for food use. Curr Opin Biotechnol 11:478–483CrossRefPubMedPubMedCentralGoogle Scholar
  21. Arpita M, Kumar DA (2018) A Review on applications of lignolytic enzymes of fungi. World J Pharm Pharm Sci 7:484–493Google Scholar
  22. Ashley DL, Blount BC, Singer PC, Depaz E, Wilkes C, Gordon S, Lyu C, Masters J (2005) Changes in blood trihalomethane concentrations resulting from differences in water quality and water use activities. Arch Environ Occup Health 60:7–15CrossRefPubMedPubMedCentralGoogle Scholar
  23. Atkin CL, Neilands J (1968) Rhodotorulic acid, a diketopiperazine dihydroxamic acid with growth-factor activity. I. Isolation and characterization. Biochemistry 7:3734–3739CrossRefPubMedPubMedCentralGoogle Scholar
  24. Atkin C, Neilands J, Phaff H (1970) Rhodotorulic acid from species of Leucosporidium, Rhodosporidium, Rhodotorula, Sporidiobolus, and Sporobolomyces, and a new alanine-containing ferrichrome from Cryptococcus melibiosum. J Bacteriol 103:722–733PubMedPubMedCentralGoogle Scholar
  25. Attawut I, Bhumiratana A, Flegel T (1981) Isolation of alkaline protease and neutral protease from Aspergillus flavus var columnaris, a Soy source Koji mould. Appl Environ Microbiol 42:619–628Google Scholar
  26. Avancini S, Faccin G, Vieira M, Rovaris A, Podesta R, Tramonte R, De Souza N, Amante E (2007) Cassava starch fermentation wastewater: characterization and preliminary toxicological studies. Food Chem Toxicol 45:2273–2278CrossRefPubMedPubMedCentralGoogle Scholar
  27. Awad NE, Kassem HA, Hamed MA, El-Feky AM, Elnaggar MA, Mahmoud K, Ali MA (2018) Isolation and characterization of the bioactive metabolites from the soil derived fungus Trichoderma viride. Mycology 9:70–80CrossRefPubMedPubMedCentralGoogle Scholar
  28. Baakza A, Vala A, Dave B, Dube H (2004) A comparative study of siderophore production by fungi from marine and terrestrial habitats. J Exp Mar Biol Ecol 311:1–9CrossRefGoogle Scholar
  29. Baars J (2017) Fungi as food. In: Fungi: biology and applications. Wiley, Chichester, p 147CrossRefGoogle Scholar
  30. Baiocco P, Barreca AM, Fabbrini M, Galli C, Gentili P (2003) Promoting laccase activity towards non-phenolic substrates: a mechanistic investigation with some laccase–mediator systems. Org Biomol Chem 1:191–197CrossRefPubMedPubMedCentralGoogle Scholar
  31. Baker W, Sabapathy K, Vibat M, Lonergan G (1996) Laccase catalyzes formation of an indamine dye between 3-methyl-2-benzothiazolinone hydrazone and 3-dimethylaminobenzoic acid. Enzyme Microbial Technol 18:90–94CrossRefGoogle Scholar
  32. Balasubramanian L, Subramanian G, Nazeer TT, Simpson HS, Rahuman ST, Raju P (2011) Cyanobacteria cultivation in industrial wastewaters and biodiesel production from their biomass: a review. Biotechnol Appl Biochem 58:220–225CrossRefPubMedPubMedCentralGoogle Scholar
  33. Baldrian P (2004) Purification and characterization of laccase from the white-rot fungus Daedalea quercina and decolorization of synthetic dyes by the enzyme. Appl Microbiol Biotechnol 63:560–563CrossRefPubMedPubMedCentralGoogle Scholar
  34. Baldrian P (2006) Fungal laccases–occurrence and properties. FEMS Microbiol Rev 30:215–242CrossRefPubMedPubMedCentralGoogle Scholar
  35. Barbesgaard P, Heldt-Hansen HP, Diderichsen B (1992) On the safety of Aspergillus oryzae: a review. Appl Microbiol Biotechnol 36:569–572CrossRefPubMedPubMedCentralGoogle Scholar
  36. Barciszewski J, Rattan SI, Siboska G, Clark BF (1999) Kinetin—45 years on. Plant Sci 148:37–45CrossRefGoogle Scholar
  37. Barea JM, Azcón-Aguilar C (1982) Production of plant growth-regulating substances by the vesicular-arbuscular mycorrhizal fungus Glomus mosseae. Appl Environ Microbiol 43:810–813PubMedPubMedCentralGoogle Scholar
  38. Barilli A, Belinghieri F, Passarella D, Lesma G, Riva S, Silvani A, Danieli B (2004) Enzyme assisted enantioselective synthesis of the alkaloid (+)-aloperine. Tetrahedron 15:2921–2925CrossRefGoogle Scholar
  39. Bátori V, Ferreira JA, Taherzadeh MJ, Lennartsson PR (2015) Ethanol and protein from ethanol plant by-products using edible fungi Neurospora intermedia and Aspergillus oryzae. Biomed Res Int.  https://doi.org/10.1155/2015/176371
  40. Battestin V, Macedo GA (2007) Effects of temperature, pH and additives on the activity of tannase produced by Paecilomyces variotii. Electron J Biotechnol 10:191–199CrossRefGoogle Scholar
  41. Bayitse R, Hou X, Laryea G, Bjerre A-B (2015) Protein enrichment of cassava residue using Trichoderma pseudokoningii (ATCC 26801). AMB Express.  https://doi.org/10.1186/s13568-015-0166-8
  42. Beardsell MF, Cohen D (1975) Relationships between leaf water status, abscisic acid levels, and stomatal resistance in maize and sorghum. Plant Physiol 56:207–212CrossRefPubMedPubMedCentralGoogle Scholar
  43. Beauchemin K, Yang W, Rode L (1999) Effects of grain source and enzyme additive on site and extent of nutrient digestion in dairy cows1. J Dairy Sci 82:378–390CrossRefGoogle Scholar
  44. Bedriñana RP, Simón AQ, Valles BS (2010) Genetic and phenotypic diversity of autochthonous cider yeasts in a cellar from Asturias. Food Microbiol 27:503–508CrossRefGoogle Scholar
  45. Beelman RB, Royse DJ, Chikthimmah N (2003) Bioactive components in button mushroom Agaricus bisporus (J. Lge) Imbach (Agaricomycetideae) of nutritional, medicinal, and biological importance. Int J Med Mushrooms.  https://doi.org/10.1615/InterJMedicMush.v5.i4.10
  46. Behie SW, Bidochka MJ (2014) Nutrient transfer in plant–fungal symbioses. Trends Plant Sci 19:734–740CrossRefGoogle Scholar
  47. Beldman G, Rombouts F, Voragen A, Pilnik W (1984) Application of cellulase and pectinase from fungal origin for the liquefaction and saccharification of biomass. Enzyme Microbial Technol 6:503–507CrossRefGoogle Scholar
  48. Belmares R, Contreras-Esquivel JC, Rodrıguez-Herrera R, Coronel AR, Aguilar CN (2004) Microbial production of tannase: an enzyme with potential use in food industry. LWT Food Sci Technol 37:857–864CrossRefGoogle Scholar
  49. Benjamins R, Scheres B (2008) Auxin: the looping star in plant development. Annu Rev Plant Biol 59:443–465CrossRefGoogle Scholar
  50. Bergquist PL, Te’o VJ, Gibbs MD, Cziferszky AC, De Faria FP, Azevedo MO, Nevalainen KH (2002) Production of recombinant bleaching enzymes from thermophilic microorganisms in fungal hosts. Appl Biochem Biotechnol 98:165–176CrossRefPubMedGoogle Scholar
  51. Bhat M (2000) Cellulases and related enzymes in biotechnology. Biotechnol Adv 18:355–383CrossRefPubMedGoogle Scholar
  52. Bilal L, Asaf S, Hamayun M, Gul H, Iqbal A, Ullah I, Lee I-J, Hussain A (2018) Plant growth promoting endophytic fungi Aspergillus fumigatus TS1 and Fusarium proliferatum BRL1 produce gibberellins and regulates plant endogenous hormones. Symbiosis 76:117.  https://doi.org/10.1007/s13199-018-0545-4CrossRefGoogle Scholar
  53. Biswas S, Kundu D, Mazumdar S, Saha A, Majumdar B, Ghorai A, Ghosh D, Yadav A, Saxena A (2018) Study on the activity and diversity of bacteria in a New Gangetic alluvial soil (Eutrocrept) under rice-wheat-jute cropping system. J Environ Biol 39:379–386CrossRefGoogle Scholar
  54. Bobek P, Ozdin L, Kuniak L (1994) Mechanism of hypocholesterolemic effect of oyster mushroom (Pleurotus ostreatus) in rats: reduction of cholesterol absorption and increase of plasma cholesterol removal. Z Ernährungswiss 33:44–50CrossRefPubMedGoogle Scholar
  55. Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant–fungus interactions in mycorrhizal symbiosis. Nat Commun 27:1–48CrossRefGoogle Scholar
  56. Botella C, De Ory I, Webb C, Cantero D, Blandino A (2005) Hydrolytic enzyme production by Aspergillus awamori on grape pomace. Biochem Eng J 26:100–106CrossRefGoogle Scholar
  57. Bram B, Solomons G (1965) Production of the enzyme naringinase by Aspergillus niger. Appl Microbiol 13:842–845PubMedPubMedCentralGoogle Scholar
  58. Brian P, Elson G, Hemming H, Radley M (1954) The plant-growth-promoting properties of gibberellic acid, a metabolic product of the fungus Gibberella fujikuroi. J Sci Food Agric 5:602–612CrossRefGoogle Scholar
  59. Brühlmann F, Kim KS, Zimmerman W, Fiechter A (1994) Pectinolytic enzymes from actinomycetes for the degumming of ramie bast fibers. Appl Environ Microbiol 60:2107–2112PubMedPubMedCentralGoogle Scholar
  60. Brum MC, Araujo WL, Maki C, Azevedo JL (2012) Endophytic fungi from Vitis labrusca L. (‘Niagara Rosada’) and its potential for the biological control of Fusarium oxysporum. Genet Mol Res 11:4187–4197CrossRefPubMedGoogle Scholar
  61. Bumpus JA, Aust SD (1987) Biodegradation of environmental pollutants by the white rot fungus Phanerochaete chrysosporium: involvement of the lignin degrading system. Bioessays 6:166–170CrossRefGoogle Scholar
  62. Burford EP, Kierans M, GADD GM (2003) Geomycology: fungi in mineral substrata. Mycologist 17:98–107CrossRefGoogle Scholar
  63. Butt MS, Tahir-Nadeem M, Ahmad Z, Sultan MT (2008) Xylanases and their applications in baking industry. Food Technol Biotechnol 46(1):22–31Google Scholar
  64. Buzzini P, Martini A (2000) Production of carotenoids by strains of Rhodotorula glutinis cultured in raw materials of agro-industrial origin. Bioresour Technol 71:41–44CrossRefGoogle Scholar
  65. Cai Y, Wang R, An M-M, Bei-Bei L (2010) Iron-depletion prevents biofilm formation in Pseudomonas aeruginosa through twitching motility and quorum sensing. Braz J Microbiol 41:37–41CrossRefPubMedPubMedCentralGoogle Scholar
  66. Calvo P, Nelson L, Kloepper JW (2014) Agricultural uses of plant biostimulants. Plant and Soil 383:3–41CrossRefGoogle Scholar
  67. Capon RJ, Stewart M, Ratnayake R, Lacey E, Gill JH (2007) Citromycetins and bilains A–C: new aromatic polyketides and diketopiperazines from Australian marine-derived and terrestrial Penicillium spp. J Nat Prod 70:1746–1752CrossRefPubMedGoogle Scholar
  68. Carlile MJ, Watkinson SC, Gooday GW (2001) The fungi, 2nd edn. Cambridge University, Academic Press, San Diego, p 558Google Scholar
  69. Carota E, Crognale S, D’Annibale A, Petruccioli M (2018) Bioconversion of agro-industrial waste into microbial oils by filamentous fungi. Process Saf Environ Prot 117:143–151CrossRefGoogle Scholar
  70. Casa R, D’Annibale A, Pieruccetti F, Stazi SR, Sermanni GG, Cascio BL (2003) Reduction of the phenolic components in olive-mill wastewater by an enzymatic treatment and its impact on durum wheat (Triticum durum Desf.) germinability. Chemosphere 50:959–966CrossRefPubMedGoogle Scholar
  71. Chanclud E, Kisiala A, Emery NR, Chalvon V, Ducasse A, Romiti-Michel C, Gravot A, Kroj T, Morel J-B (2016) Cytokinin production by the rice blast fungus is a pivotal requirement for full virulence. PLoS Pathog 12:e1005457CrossRefPubMedPubMedCentralGoogle Scholar
  72. Cheirsilp B, Suwannarat W, Niyomdecha R (2011) Mixed culture of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris for lipid production from industrial wastes and its use as biodiesel feedstock. N Biotechnol 28:362–368CrossRefPubMedGoogle Scholar
  73. Chellapandi P (2010) Production and preliminary characterization of alkaline protease from Aspergillus flavus and Aspergillus terreus. J Chem 7:479–482Google Scholar
  74. Chesson A (1980) A review: maceration in relation to the post-harvest handling and processing of plant material. J Appl Bacteriol 48:1–45CrossRefGoogle Scholar
  75. Cheung L, Cheung PC, Ooi VE (2003) Antioxidant activity and total phenolics of edible mushroom extracts. Food Chem 81:249–255CrossRefGoogle Scholar
  76. Christian V, Shrivastava R, Shukla D, Modi H, Vyas BRM (2005) Mediator role of veratryl alcohol in the lignin peroxidase-catalyzed oxidative decolorization of Remazol Brilliant Blue R. Enzyme Microbial Technol 36:426–431CrossRefGoogle Scholar
  77. Claus H (2003) Laccases and their occurrence in prokaryotes. Arch Microbiol 179:145–150CrossRefPubMedGoogle Scholar
  78. Cohen R, Persky L, Hadar Y (2002) Biotechnological applications and potential of wood-degrading mushrooms of the genus Pleurotus. Appl Microbiol Biotechnol 58:582–594CrossRefPubMedGoogle Scholar
  79. Coles K, David J, Fisher P, Lappin-Scott H, Macnair M (1999) Solubilisation of zinc compounds by fungi associated with the hyperaccumulator Thlaspi caerulescens. Bot J Scotland 51:237–247CrossRefGoogle Scholar
  80. Colla G, Rouphael Y, Canaguier R, Svecova E, Cardarelli M (2014) Biostimulant action of a plant-derived protein hydrolysate produced through enzymatic hydrolysis. Front Plant Sci.  https://doi.org/10.3389/fpls.2014.00448
  81. Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29:3–23CrossRefPubMedPubMedCentralGoogle Scholar
  82. Contreras-Cornejo HA, Macías-Rodríguez L, del-Val E, Larsen J (2018) The root endophytic fungus Trichoderma atroviride induces foliar herbivory resistance in maize plants. Appl Soil Ecol 124:45–53CrossRefGoogle Scholar
  83. Cooper S, Ashby A (1998) Comparison of cytokinin and cytokinin-O-glucoside cleaving β-glucosidase production in vitro by Venturia inaequalis and other phytopathogenic fungi with differing modes of nutrition in planta. Physiol Mol Plant Pathol 53:61–72CrossRefGoogle Scholar
  84. Couto SR, Sanromán MA (2006) Application of solid-state fermentation to food industry—a review. J Food Eng 76:291–302CrossRefGoogle Scholar
  85. Couto SR, Lopez E, Sanromán MA (2006) Utilisation of grape seeds for laccase production in solid-state fermentors. J Food Eng 74:263–267CrossRefGoogle Scholar
  86. Custry F, Fernander N, Shahani K (1987) Role of lipases and other enzymes in flavour development. In: Proceedings of 24th annual Miles-Marschall Italian cheese seminar, pp 16–17Google Scholar
  87. d’Acunzo F, Galli C, Masci B (2002) Oxidation of phenols by laccase and laccase-mediator systems: solubility and steric issues. Eur J Biochem 269:5330–5335CrossRefPubMedGoogle Scholar
  88. D’Annibale A, Ricci M, Quaratino D, Federici F, Fenice M (2004) Panus tigrinus efficiently removes phenols, color and organic load from olive-mill wastewater. Res Microbiol 155:596–603CrossRefPubMedGoogle Scholar
  89. De Gregorio A, Mandalari G, Arena N, Nucita F, Tripodo M, Curto RL (2002) SCP and crude pectinase production by slurry-state fermentation of lemon pulps. Biores Technol 83:89–94CrossRefGoogle Scholar
  90. de Souza PM (2010) Application of microbial α-amylase in industry-A review. Braz J Microbiol 41:850–861CrossRefPubMedPubMedCentralGoogle Scholar
  91. de Souza PM, de Assis Bittencourt ML, Caprara CC, de Freitas M, de Almeida RPC, Silveira D, Fonseca YM, Ferreira Filho EX, Pessoa Junior A, Magalhães PO (2015) A biotechnology perspective of fungal proteases. Braz J Microbiol 46:337–346CrossRefPubMedPubMedCentralGoogle Scholar
  92. Deml G (1985) Studies in Heterobasidiomycetes, part 34: a survey on siderophore formation in low-iron cultured smuts from the floral parts of Polygonaceae. Syst Appl Microbiol 6:23–24CrossRefGoogle Scholar
  93. Denny A, Aisbitt B, Lunn J (2008) Mycoprotein and health. Nutr Bull 33:298–310CrossRefGoogle Scholar
  94. Dervilly G, Leclercq C, Zimmermann D, Roue C, Thibault J-F, Saulnier L (2002) Isolation and characterization of high molar mass water-soluble arabinoxylans from barley and barley malt. Carbohydr Polym 47:143–149CrossRefGoogle Scholar
  95. Desai A, Archana G (2011) Role of siderophores in crop improvement. In: Maheshwari D (ed) Bacteria in agrobiology: plant nutrient management. Springer, Berlin, Heidelberg, pp 109–139CrossRefGoogle Scholar
  96. Devi MK, Banu AR, Gnanaprabha G, Pradeep B, Palaniswamy M (2008) Purification, characterization of alkaline protease enzyme from native isolate Aspergillus niger and its compatibility with commercial detergents. Indian J Sci Technol 1:1–6Google Scholar
  97. Di Cagno R, De Angelis M, Corsetti A, Lavermicocca P, Arnault P, Tossut P, Gallo G, Gobbetti M (2003) Interactions between sourdough lactic acid bacteria and exogenous enzymes: effects on the microbial kinetics of acidification and dough textural properties. Food Microbiol 20:67–75CrossRefGoogle Scholar
  98. Dias AA, Fernandes JM, Sousa RMO, Pinto PA, Amaral C, Sampaio A, Bezerra RM (2018) Fungal conversion and valorization of winery wastes. In: Prasad R (ed) Mycoremediation and environmental sustainability, Fungal biology. Springer, Cham, pp 239–252.  https://doi.org/10.1007/978-3-319-77386-5_9CrossRefGoogle Scholar
  99. Dittmer NT, Suderman RJ, Jiang H, Zhu Y-C, Gorman MJ, Kramer KJ, Kanost MR (2004) Characterization of cDNAs encoding putative laccase-like multicopper oxidases and developmental expression in the tobacco hornworm, Manduca sexta, and the malaria mosquito, Anopheles gambiae. Insect Biochem Mol Biol 34:29–41CrossRefPubMedPubMedCentralGoogle Scholar
  100. Dolatabad HK, Javan-Nikkhah M, Shier WT (2017) Evaluation of antifungal, phosphate solubilisation, and siderophore and chitinase release activities of endophytic fungi from Pistacia vera. Mycol Prog 16:777–790CrossRefGoogle Scholar
  101. Dong H, Gao S, Sp H, Sg C (1999) Purification and characterization of a Pseudomonas sp. lipase and its properties in non-aqueous media. Biotechnol Appl Biochem 30:251–256PubMedPubMedCentralGoogle Scholar
  102. Doshi R, Shelke V (2001) Enzymes in textile industry—an environment-friendly approach. Indian J Fibre Text Res 26:202–205Google Scholar
  103. Du Jardin P (2012) The science of plant biostimulants–a bibliographic analysis. Ad hoc study report to the European Commission DG ENTRGoogle Scholar
  104. du Jardin P (2015) Plant biostimulants: definition, concept, main categories and regulation. Sci Hort 196:3–14CrossRefGoogle Scholar
  105. Ducic T, Polle A (2005) Transport and detoxification of manganese and copper in plants. Braz J Plant Physiol 17:103–112CrossRefGoogle Scholar
  106. Dugan FM (2008) Fungi in the ancient world: how mushrooms, mildews, molds, and yeast shaped the early civilizations of Europe, the Mediterranean, and the Near East. APS Press, St. PaulGoogle Scholar
  107. Dupaigne B, Westbrook A (1999) The history of bread. Harry N. Abrams, Inc., New YorkGoogle Scholar
  108. Dupont J, Dequin S, Giraud T, Le Tacon F, Marsit S, Ropars J, Richard F, Selosse MA (2016) Fungi as a source of food. Microbiol Spectr 5(2):FUNK-0030.  https://doi.org/10.1128/microbiolspec.FUNK-0030-2016CrossRefGoogle Scholar
  109. Egüés I, Serrano L, Amendola D, De Faveri DM, Spigno G, Labidi J (2013) Fermentable sugars recovery from grape stalks for bioethanol production. Renew Energy 60:553–558CrossRefGoogle Scholar
  110. El-Zalaki ME, Hamza M (1979) Edible mushrooms as producers of amylases. Food Chem 4:203–211CrossRefGoogle Scholar
  111. Erkurt EA, Ünyayar A, Kumbur H (2007) Decolorization of synthetic dyes by white rot fungi, involving laccase enzyme in the process. Process Biochem 42:1429–1435CrossRefGoogle Scholar
  112. Erler F, Ates AO (2015) Potential of two entomopathogenic fungi, Beauveria bassiana and Metarhizium anisopliae (Coleoptera: Scarabaeidae), as biological control agents against the June beetle. J Insect Sci.  https://doi.org/10.1093/jisesa/iev029
  113. Esposito E, Canhos VP, Durán N (1991) Screening of lignin-degrading fungi for removal of color from Kraft mill wastewater with no additional extra carbon-source. Biotechnol Lett 13:571–576CrossRefGoogle Scholar
  114. Etemadi M, Gutjahr C, Couzigou JM, Zouine M, Lauressergues D, Timmers A, Audran C, Bouzayen M, Bécard G, Combier JP (2014) Auxin perception is required for arbuscule development in arbuscular mycorrhizal symbiosis. Plant Physiol.  https://doi.org/10.1104/pp.114.246595
  115. Eyheraguibel B, Silvestre J, Morard P (2008) Effects of humic substances derived from organic waste enhancement on the growth and mineral nutrition of maize. Biores Technol 99:4206–4212CrossRefGoogle Scholar
  116. Faber K (1992) Biotransformations in organic chemistry, vol 4. Springer, Berlin.  https://doi.org/10.1007/978-3-319-61590-5CrossRefGoogle Scholar
  117. Farjana A, Zerin N, Kabir MS (2014) Antimicrobial activity of medicinal plant leaf extracts against pathogenic bacteria. Asian Pac J Trop Dis 4:S920–S923CrossRefGoogle Scholar
  118. Fiedurek J, Gromada A (2000) Production of catalase and glucose oxidase by Aspergillus niger using unconventional oxygenation of culture. J Appl Microbiol 89:85–89CrossRefPubMedPubMedCentralGoogle Scholar
  119. Fogarty WM, Kelly CT (2012) Microbial enzymes and biotechnology. Springer, Science & Business Media DordrechtGoogle Scholar
  120. Fomina M, Burford EP, Gadd GM (2005) Toxic metals and fungal communities. In: Dighton J, White JF, Oudemans P (eds) The fungal community - its organization and role in the ecosystem. CRC Taylor & Francis Group, Boca Raton, pp 733–758CrossRefGoogle Scholar
  121. Freitas C, Malcata FX (2000) Microbiology and biochemistry of cheeses with Appélation d’Origine Protegée and manufactured in the Iberian Peninsula from ovine and caprine milks. J Dairy Sci 83:584–602CrossRefPubMedPubMedCentralGoogle Scholar
  122. Frisvad JC, Andersen B, Thrane U (2008) The use of secondary metabolite profiling in chemotaxonomy of filamentous fungi. Mycol Res 112:231–240CrossRefPubMedPubMedCentralGoogle Scholar
  123. Fritz-Langhals E, Kunath B (1998) Synthesis of aromatic aldehydes by laccase-mediator assisted oxidation. Tetrahedron Lett 39:5955–5956CrossRefGoogle Scholar
  124. Fukumoto J, Okada S (1974) Naringinase production by fermentation. Japanese patent no. 73,06,554, 1973. In: Chemical abstract, vol 80, p 94271rGoogle Scholar
  125. Gaba S, Singh RN, Abrol S, Yadav AN, Saxena AK, Kaushik R (2017) Draft genome sequence of Halolamina pelagica CDK2 isolated from natural salterns from Rann of Kutch, Gujarat, India. Genome Announc 5:1–2CrossRefGoogle Scholar
  126. Gadd GM (1999) Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Adv Microb Physiol 41:47–92CrossRefPubMedPubMedCentralGoogle Scholar
  127. Gadd GM (2006) Fungi in biogeochemical cycles, vol 24. Cambridge University Press, British Mycological Society, CambridgeCrossRefGoogle Scholar
  128. Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111:3–49CrossRefPubMedPubMedCentralGoogle Scholar
  129. Garg G, Singh A, Kaur A, Singh R, Kaur J, Mahajan R (2016) Microbial pectinases: an ecofriendly tool of nature for industries. 3 Biotech 6:47.  https://doi.org/10.1007/s13205-016-0371-4CrossRefPubMedPubMedCentralGoogle Scholar
  130. Gentile A, Giordano C, Fuganti C, Ghirotto L, Servi S (1992) The enzymic preparation of (2R, 3S)-phenyl glycidic acid esters. J Org Chem 57:6635–6637CrossRefGoogle Scholar
  131. Gerhartz W (1990) Industrial uses of enzymes. Weinheim, Enzymes in industry production and application. VCH, pp 77–148Google Scholar
  132. Germano S, Pandey A, Osaku CA, Rocha SN, Soccol CR (2003) Characterization and stability of proteases from Penicillium sp. produced by solid-state fermentation. Enzyme Microbial Technol 32:246–251CrossRefGoogle Scholar
  133. Ghorai S, Banik SP, Verma D, Chowdhury S, Mukherjee S, Khowala S (2009) Fungal biotechnology in food and feed processing. Food Res Int 42:577–587CrossRefGoogle Scholar
  134. Gianfreda L, Xu F, Bollag J-M (1999) Laccases: a useful group of oxidoreductive enzymes. Biorem J 3:1–26CrossRefGoogle Scholar
  135. Glick R, Gilmour C, Tremblay J, Satanower S, Avidan O, Déziel E, Greenberg EP, Poole K, Banin E (2010) Increase in rhamnolipid synthesis under iron-limiting conditions influences surface motility and biofilm formation in Pseudomonas aeruginosa. J Bacteriol 192:2973–2980CrossRefPubMedPubMedCentralGoogle Scholar
  136. Godfrey T, West S (1996) Textiles. In: Industrial enzymology, 2nd edn. Macmillan Publishers, New York, pp 360–371Google Scholar
  137. Goldstein AH (1995) Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilization by gram negative bacteria. Biol Agric Hortic 12:185–193CrossRefGoogle Scholar
  138. González MC, Buenrostro-Figueroa J, Durán LR, Zárate P, Rodríguez R, Rodríguez-Jasso RM, Ruiz HA, Aguilar CN (2017) Tannases. In: Pandey A, Negi S, Soccol CR (eds) Current developments in biotechnology and bioengineering: production, isolation and purification of industrial products. Elsevier, pp 471–489Google Scholar
  139. Gopinath SC, Anbu P, Lakshmipriya T, Hilda A (2013) Strategies to characterize fungal lipases for applications in medicine and dairy industry. Biomed Res Int.  https://doi.org/10.1155/2013/154549
  140. Gorbushina A, Lyalikova N, Vlasov DY, Khizhnyak T (2002) Microbial communities on the monuments of Moscow and St. Petersburg: biodiversity and trophic relations. Microbiology 71:350–356CrossRefGoogle Scholar
  141. Gorbushina AA, Whitehead K, Dornieden T, Niesse A, Schulte A, Hedges JI (2003) Black fungal colonies as units of survival: hyphal mycosporines synthesized by rock-dwelling microcolonial fungi. Can J Bot 81:131–138CrossRefGoogle Scholar
  142. Gore NS, Navale AM (2017) In vitro screening of rhizospheric Aspergillus strains for potassium solubilization from Maharashtra, India. South Asian J Exp Biol 6:228–233Google Scholar
  143. Gray J, Bemiller J (2003) Bread staling: molecular basis and control. Compr Rev Food Sci Food Saf 2:1–21CrossRefGoogle Scholar
  144. Greenough R, Perry C, Stavnsbjerg M (1996) Safety evaluation of a lipase expressed in Aspergillus oryzae. Food Chem Toxicol 34:161–166CrossRefPubMedPubMedCentralGoogle Scholar
  145. Greiner R, Carlsson N-G (2006) Myo-Inositol phosphate isomers generated by the action of a phytate-degrading enzyme from Klebsiella terrigena on phytate. Can J Microbiol 52:759–768CrossRefPubMedPubMedCentralGoogle Scholar
  146. Gruen HE (1959) Auxins and fungi. Annu Rev Plant Physiol 10:405–440CrossRefGoogle Scholar
  147. Guest R, Smith DW (2002) A potential new role for fungi in a wastewater MBR biological nitrogen reduction system. J Environ Eng Sci 1:433–437CrossRefGoogle Scholar
  148. Gundala PB, Chinthala P, Sreenivasulu B (2013) A new facultative alkaliphilic, potassium solubilizing, Bacillus Sp. SVUNM9 isolated from mica cores of Nellore District, Andhra Pradesh, India. Research and reviews. J Microbiol Biotechnol 2:1–7Google Scholar
  149. Gupta R, Gigras P, Mohapatra H, Goswami VK, Chauhan B (2003a) Microbial α-amylases: a biotechnological perspective. Process Biochem 38:1599–1616CrossRefGoogle Scholar
  150. Gupta R, Rathi P, Bradoo S (2003b) Lipase mediated upgradation of dietary fats and oils. Crit Rev Food Sci Nutr 43:635–644CrossRefPubMedPubMedCentralGoogle Scholar
  151. Gupta R, Gangoliya S, Singh N (2014) Isolation of thermotolerant phytase producing fungi and optimisation of phytase production by Aspergillus niger NRF9 in solid state fermentation using response surface methodology. Biotechnol Bioprocess Eng 19:996–1004CrossRefGoogle Scholar
  152. Gurung N, Ray S, Bose S, Rai V (2013) A broader view: microbial enzymes and their relevance in industries, medicine, and beyond. Biomed Res Int.  https://doi.org/10.1155/2013/329121
  153. Gutjahr C (2014) Phytohormone signaling in arbuscular mycorhiza development. Curr Opin Plant Biol 20:26–34CrossRefPubMedPubMedCentralGoogle Scholar
  154. Hagman A, Säll T, Compagno C, Piskur J (2013) Yeast “make-accumulate-consume” life strategy evolved as a multi-step process that predates the whole genome duplication. PLoS One 8:e68734CrossRefPubMedPubMedCentralGoogle Scholar
  155. Hajdok S, Leutbecher H, Greiner G, Conrad J, Beifuss U (2007) Laccase initiated oxidative domino reactions for the efficient synthesis of 3, 4-dihydro-7, 8-dihydroxy-2H-dibenzofuran-1-ones. Tetrahedron Lett 48:5073–5076CrossRefGoogle Scholar
  156. Hameeda B, Harini G, Rupela O, Wani S, Reddy G (2008) Growth promotion of maize by phosphate-solubilizing bacteria isolated from composts and macrofauna. Microbiol Res 163:234–242CrossRefPubMedPubMedCentralGoogle Scholar
  157. Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5:R245–R249CrossRefPubMedPubMedCentralGoogle Scholar
  158. Harbak L, Thygesen H (2002) Safety evaluation of a xylanase expressed in Bacillus subtilis. Food Chem Toxicol 40:1–8CrossRefPubMedPubMedCentralGoogle Scholar
  159. Hasan F, Shah AA, Hameed A (2006) Industrial applications of microbial lipases. Enzyme Microbial Technol 39:235–251CrossRefGoogle Scholar
  160. Hasan F, Shah AA, Javed S, Hameed A (2010) Enzymes used in detergents: lipases. Afr J Biotechnol 9:4836–4844Google Scholar
  161. Haselwandter K, Häninger G, Ganzera M, Haas H, Nicholson G, Winkelmann G (2013) Linear fusigen as the major hydroxamate siderophore of the ectomycorrhizal Basidiomycota Laccaria laccata and Laccaria bicolor. Biometals 26:969–979CrossRefPubMedPubMedCentralGoogle Scholar
  162. Hatamoto O, Sekine H, Nakano E, ABE K (1999) Cloning and expression of a cDNA encoding the laccase from Schizophyllum commune. Biosci Biotechnol Biochem 63:58–64CrossRefPubMedPubMedCentralGoogle Scholar
  163. Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105:1422–1432CrossRefGoogle Scholar
  164. Heckman DS, Geiser DM, Eidell BR, Stauffer RL, Kardos NL, Hedges SB (2001) Molecular evidence for the early colonization of land by fungi and plants. Science 293:1129–1133CrossRefPubMedPubMedCentralGoogle Scholar
  165. Hermet A, Méheust D, Mounier J, Barbier G, Jany J-L (2012) Molecular systematics in the genus Mucor with special regards to species encountered in cheese. Fungal Biol 116:692–705CrossRefPubMedPubMedCentralGoogle Scholar
  166. Hesseltine C, Pidacks C, Whitehill A, Bohonos N, Hutchings B, Williams J (1952) Coprogen, a new growth factor for coprophilic fungi. J Am Chem Soc 74:1362–1362CrossRefGoogle Scholar
  167. Higginbotham SJ, Arnold AE, Ibañez A, Spadafora C, Coley PD, Kursar TA (2013) Bioactivity of fungal endophytes as a function of endophyte taxonomy and the taxonomy and distribution of their host plants. PLoS One 8:e73192CrossRefPubMedPubMedCentralGoogle Scholar
  168. Hilares RT, de Souza RA, Marcelino PF, da Silva SS, Dragone G, Mussatto SI, Santos JC (2018) Sugarcane bagasse hydrolysate as a potential feedstock for red pigment production by Monascus ruber. Food Chem 245:786–791CrossRefGoogle Scholar
  169. Hirsch AM, Fang Y (1994) Plant hormones and nodulation: what’s the connection? Plant Mol Biol 26:5–9CrossRefPubMedPubMedCentralGoogle Scholar
  170. Hoondal G, Tiwari R, Tewari R, Dahiya N, Beg Q (2002) Microbial alkaline pectinases and their industrial applications: a review. Appl Microbiol Biotechnol 59:409–418CrossRefPubMedPubMedCentralGoogle Scholar
  171. Houde A, Kademi A, Leblanc D (2004) Lipases and their industrial applications. Appl Biochem Biotechnol 118:155–170CrossRefGoogle Scholar
  172. Howard DH (1999) Acquisition, transport, and storage of iron by pathogenic fungi. Clin Microbiol Rev 12:394–404CrossRefPubMedPubMedCentralGoogle Scholar
  173. Illanes A, Cauerhff A, Wilson L, Castro GR (2012) Recent trends in biocatalysis engineering. Biores Technol 115:48–57CrossRefGoogle Scholar
  174. Ito T, Takiguchi Y (1970) Naringinase production by Cochiobolus miyabeanus. Jpn Patent 7:875Google Scholar
  175. Jaeger K-E, Reetz MT (1998) Microbial lipases form versatile tools for biotechnology. Trends Biotechnol 16:396–403CrossRefPubMedGoogle Scholar
  176. Jaeger K, Randac S, Dijkstra B, Colson C, van Heuvel M, Misset O (1994) Bacterial lipases. FEMS Microbiol Lett 15:29–63CrossRefGoogle Scholar
  177. Jalis H, Ahmad A, Khan S, Sohail M (2014) Utilization of apple peels for the production of plant cell-wall degrading enzymes by Aspergillus fumigatus MS16. J Anim Plant Sci 24:64–67Google Scholar
  178. Jaouani A, Guillén F, Penninckx MJ, Martínez AT, Martínez MJ (2005) Role of Pycnoporus coccineus laccase in the degradation of aromatic compounds in olive oil mill wastewater. Enzyme Microbial Technol 36:478–486CrossRefGoogle Scholar
  179. Jin B, Van Leeuwen H, Patel B, Yu Q (1998) Utilisation of starch processing wastewater for production of microbial biomass protein and fungal α-amylase by Aspergillus oryzae. Biores Technol 66:201–206CrossRefGoogle Scholar
  180. Jin B, Zepf F, Bai Z, Gao B, Zhu N (2016) A biotech-systematic approach to select fungi for bioconversion of winery biomass wastes to nutrient-rich feed. Process Saf Environ Prot 103:60–68CrossRefGoogle Scholar
  181. Johannes T, Michael R, Simurdiak HZ (2006) Biocatalysis. In: Taylor & Francis (ed) Encyclopedia of chemical processing. Taylor & Francis, New York, pp 101–110.  https://doi.org/10.1081/E-ECHP-120017565CrossRefGoogle Scholar
  182. Johansson JF, Paul LR, Finlay RD (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48:1–13CrossRefPubMedGoogle Scholar
  183. John J (2017) Amylases-bioprocess and potential applications: a review. Intl J Bioinform Biol Sci 5(2):41–50CrossRefGoogle Scholar
  184. Kamini N, Hemachander C, Mala JGS, Puvanakrishnan R (1999) Microbial enzyme technology as an alternative to conventional chemicals in leather industry. Curr Sci 77:80–86Google Scholar
  185. Kantifedaki A, Kachrimanidou V, Mallouchos A, Papanikolaou S, Koutinas A (2018) Orange processing waste valorisation for the production of bio-based pigments using the fungal strains Monascus purpureus and Penicillium purpurogenum. J Clean Prod 185:882–890CrossRefGoogle Scholar
  186. Kapoor A, Viraraghavan T (1995) Fungal biosorption—an alternative treatment option for heavy metal bearing wastewaters: a review. Biores Technol 53:195–206Google Scholar
  187. Kapri A, Tewari L (2010) Phosphate solubilization potential and phosphatase activity of rhizospheric Trichoderma spp. Braz J Microbiol 41:787–795CrossRefGoogle Scholar
  188. Kar B, Banerjee R, Bhattacharyya BC (2002) Optimization of physicochemical parameters for gallic acid production by evolutionary operation-factorial design technique. Process Biochem 37:1395–1401CrossRefGoogle Scholar
  189. Karamyshev AV, Shleev SV, Koroleva OV, Yaropolov AI, Sakharov IY (2003) Laccase-catalyzed synthesis of conducting polyaniline. Enzyme Microb Technol 33:556–564CrossRefGoogle Scholar
  190. Kardel G, Furtado MM, Neto JPML (1995) Lactase na Indústria de Laticínios (Parte 1). Revista do Instituto de Laticínios “Cândido Tostes”. Juiz de Fora 50:15–17Google Scholar
  191. Karigar CS, Rao SS (2011) Role of microbial enzymes in the bioremediation of pollutants: a review. Enzyme Res.  https://doi.org/10.4061/2011/805187
  192. Karmakar P, Sharma D, Das P, Saha AK (2018) Phosphate solubilizing capacity and siderophore production by arthroderma cuniculi dawson 1963 isolated from rhizospheric soil. Res J Life Sci Bioinform Pharma Chem Sci.  https://doi.org/10.26479/2018.0403.29
  193. Karpe AV, Beale DJ, Godhani NB, Morrison PD, Harding IH, Palombo EA (2015a) Untargeted metabolic profiling of winery-derived biomass waste degradation by Penicillium chrysogenum. J Agric Food Chem 63:10696–10704CrossRefPubMedGoogle Scholar
  194. Karpe AV, Beale DJ, Harding IH, Palombo EA (2015b) Optimization of degradation of winery-derived biomass waste by Ascomycetes. J Chem Technol Biotechnol 90:1793–1801CrossRefGoogle Scholar
  195. Karthikeyan P, Kanimozhi K, Senthilkumar G, Panneerselvam A, Ashok G (2014) Optimization of enzyme production in Trichoderma viride using carbon and nitrogen source. Int J Curr Microbiol App Sci 3:88–95Google Scholar
  196. Karwehl S, Stadler M (2016) Exploitation of fungal biodiversity for discovery of novel antibiotics. In: Stadler M, Dersch P (eds) How to overcome the antibiotic crisis, Current topics in microbiology and immunology, vol 398. Springer, Cham, pp 303–338.  https://doi.org/10.1007/82_2016_496CrossRefGoogle Scholar
  197. Kashyap D, Vohra P, Chopra S, Tewari R (2001) Applications of pectinases in the commercial sector: a review. Biores Technol 77:215–227CrossRefGoogle Scholar
  198. Kasieczka-Burnecka M, Kuc K, Kalinowska H, Knap M, Turkiewicz M (2007) Purification and characterization of two cold-adapted extracellular tannin acyl hydrolases from an Antarctic strain Verticillium sp. P9. Appl Microbiol Biotechnol 77:77–89CrossRefGoogle Scholar
  199. Kathiresan K, Manivannan S (2006) Amylase production by Penicillium fellutanum isolated from mangrove rhizosphere soil. Afr J Biotechnol 5:829–832Google Scholar
  200. Kauffman GL, Kneivel DP, Watschke TL (2007) Effects of a biostimulant on the heat tolerance associated with photosynthetic capacity, membrane thermostability, and polyphenol production of perennial ryegrass. Crop Sci 47:261–267CrossRefGoogle Scholar
  201. Kaur R, Saxena A, Sangwan P, Yadav AN, Kumar V, Dhaliwal HS (2017) Production and characterization of a neutral phytase of Penicillium oxalicum EUFR-3 isolated from Himalayan region. Nus Biosci 9:68–76CrossRefGoogle Scholar
  202. Keskin SÖ, Sumnu G, Sahin S (2004) Usage of enzymes in a novel baking process. Food Nahrung 48:156–160CrossRefGoogle Scholar
  203. Khan AL, Hamayun M, Kim Y-H, Kang S-M, Lee J-H, Lee I-J (2011) Gibberellins producing endophytic Aspergillus fumigatus sp. LH02 influenced endogenous phytohormonal levels, isoflavonoids production and plant growth in salinity stress. Process Bochem 46:440–447CrossRefGoogle Scholar
  204. Khan A, Singh P, Srivastava A (2017) Synthesis, nature and utility of universal iron chelator siderophore: a review. Microbiol Res 212:103–111.  https://doi.org/10.1016/j.micres.2017.10.012CrossRefPubMedGoogle Scholar
  205. Kiiskinen L-L, Kruus K, Bailey M, Ylösmäki E, Siika-aho M, Saloheimo M (2004a) Expression of Melanocarpus albomyces laccase in Trichoderma reesei and characterization of the purified enzyme. Microbiology 150:3065–3074CrossRefGoogle Scholar
  206. Kiiskinen LL, Rättö M, Kruus K (2004b) Screening for novel laccase-producing microbes. J Appl Microbiol 97:640–646CrossRefGoogle Scholar
  207. Kim TI, Park SJ, Choi CH, Lee SK, Kim WH (2004) Effect of ear mushroom (Auricularia) on functional constipation. Korean J Gastroenterol 44:34–41PubMedGoogle Scholar
  208. Kim JI, Murphy AS, Baek D, Lee S-W, Yun D-J, Bressan RA, Narasimhan ML (2011) YUCCA6 over-expression demonstrates auxin function in delaying leaf senescence in Arabidopsis thaliana. J Exp Bot 62:3981–3992CrossRefPubMedPubMedCentralGoogle Scholar
  209. Kirk O, Borchert TV, Fuglsang CC (2002) Industrial enzyme applications. Curr Opin Biotechnol 13:345–351CrossRefPubMedPubMedCentralGoogle Scholar
  210. Kishi K (1955) Production of naringinase from Aspergillus niger. Kagaku to Kogyo. Chem Ind Jpn 29:140Google Scholar
  211. Kloepper J, Hume D, Scher F, Singleton C, Tipping B, Laliberte M, Frauley K, Kutchaw T, Simonson C, Lifshitz R (1988) Plant growth-promoting rhizobacteria on canola (rapeseed). Plant Dis 72:42–46CrossRefGoogle Scholar
  212. Ko J, Lee B, Lee J, Park HJ (2008) Effect of UV-B exposure on the concentration of vitamin D2 in sliced shiitake mushroom (Lentinus edodes) and white button mushroom (Agaricus bisporus). J Agric Food Chem 56:3671–3674CrossRefPubMedPubMedCentralGoogle Scholar
  213. Kogelmann WJ, Sharpe WE (2006) Soil acidity and manganese in declining and nondeclining sugar maple stands in Pennsylvania. J Environ Qual 35:433–441CrossRefPubMedPubMedCentralGoogle Scholar
  214. Kour D, Rana KL, Verma P, Yadav AN, Kumar V, Singh DH (2017a) Biofertilizers: eco-friendly technologies and bioresources for sustainable agriculture. In: Proceeding of international conference on innovative research in engineering science and technologyGoogle Scholar
  215. Kour D, Rana KL, Verma P, Yadav AN, Kumar V, Singh DH (2017b) Drought tolerant phosphorus solubilizing microbes: diversity and biotechnological applications for crops growing under rainfed conditions. In: Proceeding of national conference on advances in food science and technologyGoogle Scholar
  216. Kovac A, Stadler P, Haalck L, Spener F, Paltauf F (1996) Hydrolysis and esterification of acylglycerols and analogs in aqueous medium catalyzed by microbial lipases. Biochim Biophys Acta Lipid Met 1301:57–66CrossRefGoogle Scholar
  217. Kramer KJ, Kanost MR, Hopkins TL, Jiang H, Zhu YC, Xu R, Kerwin J, Turecek F (2001) Oxidative conjugation of catechols with proteins in insect skeletal systems. Tetrahedron 57:385–392CrossRefGoogle Scholar
  218. Krzyczkowski W, Malinowska E, Suchocki P, Kleps J, Olejnik M, Herold F (2009) Isolation and quantitative determination of ergosterol peroxide in various edible mushroom species. Food Chem 113:351–355CrossRefGoogle Scholar
  219. Kuhad RC, Gupta R, Singh A (2011) Microbial cellulases and their industrial applications. Enzyme Res.  https://doi.org/10.4061/2011/280696
  220. Kumar CG, Malik R, Tiwari M (1998) Novel enzyme-based detergents: an Indian perspective. Curr Sci 75:1312–1318Google Scholar
  221. Kumar SS, Kumar L, Sahai V, Gupta R (2009) A thiol-activated lipase from Trichosporon asahii MSR 54: detergent compatibility and presoak formulation for oil removal from soiled cloth at ambient temperature. J Ind Microbiol Biotechnol 36:427.  https://doi.org/10.1007/s10295-008-0513-8CrossRefPubMedPubMedCentralGoogle Scholar
  222. Kumar V, Yadav AN, Saxena A, Sangwan P, Dhaliwal HS (2016) Unravelling rhizospheric diversity and potential of phytase producing microbes. SM J Biol 2:1009Google Scholar
  223. Kumar V, Yadav AN, Verema P, Sangwan P, Abhishake S, Singh B (2017) β-Propeller phytases: diversity, catalytic attributes, current developments and potential biotechnological applications. Int J Biol Macromol 98:595–609CrossRefPubMedPubMedCentralGoogle Scholar
  224. Kumar CS, Jacob T, Devasahayam S, Thomas S, Geethu C (2018) Multifarious plant growth promotion by an entomopathogenic fungus Lecanicillium psalliotae. Microbiol Res 207:153–160CrossRefGoogle Scholar
  225. Kunamneni A, Ghazi I, Camarero S, Ballesteros A, Plou FJ, Alcalde M (2008) Decolorization of synthetic dyes by laccase immobilized on epoxy-activated carriers. Process Biochem 43:169–178CrossRefGoogle Scholar
  226. Kurisawa M, Chung JE, Uyama H, Kobayashi S (2003) Laccase-catalyzed synthesis and antioxidant property of poly (catechin). Macromol Biosci 3:758–764CrossRefGoogle Scholar
  227. Labbe M, Serres J (2004) Chroniques du Roquefort—De la préhistoire à l’aube industrielle. Graphi Imprimeur, La PrimaubeGoogle Scholar
  228. Labbe M, Serres J (2009) Chroniques du Roquefort-Des hommes, des entreprises, des marques, période moderne. Graphi Imprimeur, La PrimaubeGoogle Scholar
  229. Laboret F, Perraud R (1999) Lipase-catalyzed production of short-chain acids terpenyl esters of interest to the food industry. Appl Biochem Biotechnol 82:185–198CrossRefPubMedPubMedCentralGoogle Scholar
  230. Lange MP, Lange T (2006) Gibberellin biosynthesis and the regulation of plant development. Plant Biol 8:281–290CrossRefPubMedPubMedCentralGoogle Scholar
  231. Laxman RS, Sonawane AP, More SV, Rao BS, Rele MV, Jogdand VV, Deshpande VV, Rao MB (2005) Optimization and scale up of production of alkaline protease from Conidiobolus coronatus. Process Biochem 40:3152–3158CrossRefGoogle Scholar
  232. Lei Z, Zhang Y-Q (2015) Effects of phosphate solubilization and phytohormone production of Trichoderma asperellum Q1 on promoting cucumber growth under salt stress. J Int Agric 14:1588–1597CrossRefGoogle Scholar
  233. Lei Y, Korpelainen H, Li C (2007) Physiological and biochemical responses to high Mn concentrations in two contrasting Populus cathayana populations. Chemosphere 68:686–694CrossRefPubMedPubMedCentralGoogle Scholar
  234. Levin L, Forchiassin F, Viale A (2005) Ligninolytic enzyme production and dye decolorization by Trametes trogii: application of the Plackett–Burman experimental design to evaluate nutritional requirements. Process Biochem 40:1381–1387CrossRefGoogle Scholar
  235. Levin L, Diorio L, Grassi E, Forchiassin F (2012) Grape stalks as substrate for white rot fungi, lignocellulolytic enzyme production and dye decolorization. Rev Argent Microbiol 44:105–112PubMedPubMedCentralGoogle Scholar
  236. Li S, Yang X, Yang S, Zhu M, Wang X (2012) Technology prospecting on enzymes: application, marketing and engineering. Comput Struct Biotechnol J 2:e201209017CrossRefPubMedPubMedCentralGoogle Scholar
  237. Libra JA, Borchert M, Banit S (2003) Competition strategies for the decolorization of a textile-reactive dye with the white-rot fungi Trametes versicolor under non-sterile conditions. Biotechnol Bioeng 82:736–744CrossRefPubMedPubMedCentralGoogle Scholar
  238. López-Abelairas M, Pallín MÁ, Salvachúa D, Lú-Chau T, Martínez M, Lema J (2013) Optimisation of the biological pretreatment of wheat straw with white-rot fungi for ethanol production. Bioprocess Biosyst Eng 36:1251–1260CrossRefPubMedPubMedCentralGoogle Scholar
  239. Mahboubi A, Ferreira JA, Taherzadeh MJ, Lennartsson PR (2017) Value-added products from dairy waste using edible fungi. Waste Manag 59:518–525.  https://doi.org/10.1016/j.wasman.2016.11.017CrossRefPubMedPubMedCentralGoogle Scholar
  240. Mahoney RR (1997) Lactose: enzymatic modification. In: Fox PF (ed) Advanced dairy chemistry, vol 3. Springer, Boston, pp 77–125Google Scholar
  241. Malathi S, Chakraborty R (1991) Production of alkaline protease by a new Aspergillus flavus isolate under solid-substrate fermentation conditions for use as a depilation agent. Appl Environ Microbiol 57:712–716PubMedPubMedCentralGoogle Scholar
  242. Malina G, Zawierucha I (2007) Potential of bioaugmentation and biostimulation for enhancing intrinsic biodegradation in oil hydrocarbon-contaminated soil. Biorem J 11:141–147CrossRefGoogle Scholar
  243. Mantovani CF, Geimba MP, Brandelli A (2005) Enzymatic clarification of fruit juices by fungal pectin lyase. Food Biotechnol 19:173–181CrossRefGoogle Scholar
  244. Margesin R, Zimmerbauer A, Schinner F (1999) Soil lipase activity–a useful indicator of oil biodegradation. Biotechnol Tech 13:859–863CrossRefGoogle Scholar
  245. Martínez O, Sánchez A, Font X, Barrena R (2017) Valorization of sugarcane bagasse and sugar beet molasses using Kluyveromyces marxianus for producing value-added aroma compounds via solid-state fermentation. J Clean Prod 158:8–17CrossRefGoogle Scholar
  246. Martino E, Perotto S, Parsons R, Gadd GM (2003) Solubilization of insoluble inorganic zinc compounds by ericoid mycorrhizal fungi derived from heavy metal polluted sites. Soil Biol Biochem 35:133–141CrossRefGoogle Scholar
  247. Marwaha S, Puri M, Bhullar M, Kothari R (1994) Optimization of parameters for hydrolysis of limonin for debittering of kinnow mandarin juice by Rhodococcus fascians. Enzyme Microbial Technol 16:723–725CrossRefGoogle Scholar
  248. Marzorati M, Danieli B, Haltrich D, Riva S (2005) Selective laccase-mediated oxidation of sugars derivatives. Green Chem 7:310–315CrossRefGoogle Scholar
  249. Mattila P, Lampi A-M, Ronkainen R, Toivo J, Piironen V (2002) Sterol and vitamin D2 contents in some wild and cultivated mushrooms. Food Chem 76:293–298CrossRefGoogle Scholar
  250. Mattinen M-L, Hellman M, Permi P, Autio K, Kalkkinen N, Buchert J (2006) Effect of protein structure on laccase-catalyzed protein oligomerization. J Agric Food Chem 54:8883–8890CrossRefPubMedPubMedCentralGoogle Scholar
  251. Mazmanci MA, Ünyayar A (2005) Decolourisation of Reactive Black 5 by Funalia trogii immobilised on Luffa cylindrica sponge. Process Biochem 40:337–342CrossRefGoogle Scholar
  252. McAfee J (2008) Potassium, a key nutrient for plant growth. Department of Soil and Crop Sciences. http://jimmcafee.tamu.edu/files/potassium
  253. McSweeney PL (2004) Biochemistry of cheese ripening. Int J Dairy Technol 57:127–144CrossRefGoogle Scholar
  254. Meena VS (2016) Potassium-solubilizing microorganism in evergreen agriculture: an overview. In: Meena V, Maurya B, Verma J, Meena R (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi.  https://doi.org/10.1007/978-81-322-2776-2_1CrossRefGoogle Scholar
  255. Mehaia M, Cheryan M (1987) Production of lactic acid from sweet whey permeate concentrates. Process Biochem 22:185–188Google Scholar
  256. Michelson P (2010) Cheese: exploring taste and tradition. Gibbs Smith, LaytonGoogle Scholar
  257. Michniewicz A, Ledakowicz S, Ullrich R, Hofrichter M (2008) Kinetics of the enzymatic decolorization of textile dyes by laccase from Cerrena unicolor. Dye Pigment 77:295–302CrossRefGoogle Scholar
  258. Miguel ÂSM, Martins-Meyer TS, da Costa Figueiredo ÉV, Lobo BWP, Dellamora-Ortiz GM (2013) Enzymes in bakery: current and future trends. In: Muzzalupo I (ed) Food industry. e-book, InTech, pp 287–321. Available online at: http://www.intechopen.com/books/food-industry/enzymes-in-bakery-current-and-future-trends
  259. Milagres AM, Machuca A, Napoleao D (1999) Detection of siderophore production from several fungi and bacteria by a modification of chrome azurol S (CAS) agar plate assay. J Microbiol Methods 37:1–6CrossRefPubMedPubMedCentralGoogle Scholar
  260. Millaleo R, Reyes-Díaz M, Ivanov A, Mora M, Alberdi M (2010) Manganese as essential and toxic element for plants: transport, accumulation and resistance mechanisms. J Soil Sci Plant Nutr 10:470–481CrossRefGoogle Scholar
  261. Minussi RC, Pastore GM, Duran N (2002) Potential applications of laccase in the food industry. Trends Food Sci Technol 13:205–216CrossRefGoogle Scholar
  262. Mitchell DB, Vogel K, Weimann BJ, Pasamontes L, van Loon AP (1997) The phytase subfamily of histidine acid phosphatases: isolation of genes for two novel phytases from the fungi Aspergillus terreus and Myceliophthora thermophila. Microbiology 143:245–252CrossRefPubMedPubMedCentralGoogle Scholar
  263. Mittal V, Singh O, Nayyar H, Kaur J, Tewari R (2008) Stimulatory effect of phosphate-solubilizing fungal strains (Aspergillus awamori and Penicillium citrinum) on the yield of chickpea (Cicer arietinum L. cv. GPF2). Soil Biol Biochem 40:718–727CrossRefGoogle Scholar
  264. Mohanty S, Ghosh S, Nayak S, Das A (2017) Isolation, identification and screening of manganese solubilizing fungi from low-grade manganese ore deposits. Geomicrobiol J 34:309–316CrossRefGoogle Scholar
  265. Mojsov K (2012) Microbial alpha-amylases and their industrial applications: a review. Int J Manag IT Eng 2:583–609Google Scholar
  266. Mojsov K, Andronikov D, Janevski A, Jordeva S, Kertakova M, Golomeova S, Gaber S, Ignjatov I (2018) Production and application of α-amylase enzyme in textile industry. Teks Indus 66:23–28Google Scholar
  267. Moore D, Chiu SW (2001) Filamentous fungi as food. In: Pointing SB, Hyde KD (eds) Exploitation of filamentous fungi. Fungal Diversity Press, Hong KongGoogle Scholar
  268. Moredo N, Lorenzo M, Domínguez A, Moldes D, Cameselle C, Sanroman A (2003) Enhanced ligninolytic enzyme production and degrading capability of Phanerochaete chrysosporium and Trametes versicolor. World J Microbiol Biotechnol 19:665–669CrossRefGoogle Scholar
  269. Morrison EN, Knowles S, Hayward A, Thorn RG, Saville BJ, Emery R (2015) Detection of phytohormones in temperate forest fungi predicts consistent abscisic acid production and a common pathway for cytokinin biosynthesis. Mycologia 107:245–257CrossRefPubMedPubMedCentralGoogle Scholar
  270. Mukherjee PK, Horwitz BA, Herrera-Estrella A, Schmoll M, Kenerley CM (2013) Trichoderma research in the genome era. Annu Rev Phytopathol 51:105–129CrossRefPubMedPubMedCentralGoogle Scholar
  271. Mukherjee PK, Hurley JF, Taylor JT, Puckhaber L, Lehner S, Druzhinina I, Schumacher R, Kenerley CM (2018) Ferricrocin, the intracellular siderophore of Trichoderma virens, is involved in growth, conidiation, gliotoxin biosynthesis and induction of systemic resistance in maize. Biochem Biophys Res Commun 505:606–611CrossRefPubMedPubMedCentralGoogle Scholar
  272. Müller G, Barclay SJ, Raymond KN (1985) The mechanism and specificity of iron transport in Rhodotorula pilimanae probed by synthetic analogs of rhodotorulic acid. J Biol Chem 260:13916–13920PubMedPubMedCentralGoogle Scholar
  273. Muniraj IK, Xiao L, Liu H, Zhan X (2015) Utilisation of potato processing wastewater for microbial lipids and γ-linolenic acid production by oleaginous fungi. J Sci Food Agric 95:3084–3090CrossRefPubMedPubMedCentralGoogle Scholar
  274. Murata Y, Shimamura T, Tagami T, Takatsuki F, Hamuro J (2002) The skewing to Th1 induced by lentinan is directed through the distinctive cytokine production by macrophages with elevated intracellular glutathione content. Int Immunopharmacol 2:673–689CrossRefPubMedPubMedCentralGoogle Scholar
  275. Murphy A, Pryce-Jones E, Johnstone K, Ashby A (1997) Comparison of cytokinin production in vitro by Pyrenopeziza brassicae with other plant pathogens. Physiol Mol Plant Pathol 50:53–65CrossRefGoogle Scholar
  276. Nagasawa T, Yamada H (1995) Interrelations of chemistry and biotechnology-VI. Microbial production of commodity chemicals (Technical Report). Pure Appl Chem 67:1241–1256CrossRefGoogle Scholar
  277. Nahas E (1996) Factors determining rock phosphate solubilization by microorganisms isolated from soil. World J Microbiol Biotechnol 12:567–572CrossRefPubMedPubMedCentralGoogle Scholar
  278. Nakamura I, Yoshimura S, Masaki T, Takase S, Ohsumi K, Hashimoto M, Furukawa S, Fujie A (2017) ASP2397: a novel antifungal agent produced by Acremonium persicinum MF-347833. J Antibiot 70:45–51CrossRefPubMedPubMedCentralGoogle Scholar
  279. Nampoothiri KM, Tomes GJ, Roopesh K, Szakacs G, Nagy V, Soccol CR, Pankey A (2004) Thermostable phytase production by Thermoascus aurantiacus in submerged fermentation. Appl Biochem Biotechnol 118:205–214CrossRefPubMedPubMedCentralGoogle Scholar
  280. Neelakantan S, Mohanty A, Kaushik JK (1999) Production and use of microbial enzymes for dairy processing. Curr Sci 77:143–148Google Scholar
  281. Nicolas C, Hermosa R, Rubio B, Mukherjee PK, Monte E (2014) Trichoderma genes in plants for stress tolerance-status and prospects. Plant Sci 228:71–78CrossRefPubMedPubMedCentralGoogle Scholar
  282. Nicotra S, Cramarossa MR, Mucci A, Pagnoni UM, Riva S, Forti L (2004) Biotransformation of resveratrol: synthesis of trans-dehydrodimers catalyzed by laccases from Myceliophtora thermophyla and from Trametes pubescens. Tetrahedron 60:595–600CrossRefGoogle Scholar
  283. Nomura D (1965) Studies on naringinase produced by Coniothyrium diplodiella. I. The properties of naringinase and the removal of co-existing pectinase from the enzyme preparation. Enzymologia 29(3):272–282PubMedPubMedCentralGoogle Scholar
  284. Norman S, Bennett R, Maier V, Poling S (1983) Cytokinins inhibit abscisic acid biosynthesis in Cercospora rosicola. Plant Sci Lett 28:255–263CrossRefGoogle Scholar
  285. Oide S, Krasnoff SB, Gibson DM, Turgeon BG (2007) Intracellular siderophores are essential for ascomycete sexual development in heterothallic Cochliobolus heterostrophus and homothallic Gibberella zeae. Eukaryot Cell 6:1339–1353CrossRefPubMedPubMedCentralGoogle Scholar
  286. Okal M, Miyamoto K, Okada K, Ueda J (1999) Auxin polar transport and flower formation in Arabidopsis thaliana transformed with indoleacetamide hydrolase (iaaH) gene. Plant Cell Physiol 40:231–237CrossRefGoogle Scholar
  287. Okamura T, Ogata T, MINAMOTO N, Takeno T, Noda H, Fukuda S, Ohsugi M (2001) Characteristics of wine produced by mushroom fermentation. Biosci Biotechnol Biochem 65:1596–1600CrossRefPubMedPubMedCentralGoogle Scholar
  288. Okolo BN, Ezeogu LI, Mba CN (1995) Production of raw starch digesting amylase by Aspergillus niger grown on native starch sources. J Sci Food Agric 69:109–115CrossRefGoogle Scholar
  289. Olivares FL, Aguiar NO, Rosa RCC, Canellas LP (2015) Substrate biofortification in combination with foliar sprays of plant growth promoting bacteria and humic substances boosts production of organic tomatoes. Sci Hort 183:100–108CrossRefGoogle Scholar
  290. Olsen HS, Falholt P (1998) The role of enzymes in modern detergency. J Surfactant Deterg 1:555–567CrossRefGoogle Scholar
  291. Ouzouni P, Riganakos K (2007) Nutritional value and metal content profile of Greek wild edible fungi. Acta Aliment 36:99–110CrossRefGoogle Scholar
  292. Ozdal M, Kurbanoglu EB (2018) Citric Acid Production by Aspergillus niger from Agro-Industrial By-Products: Molasses and Chicken Feather Peptone. Waste Biomass Valor.  https://doi.org/10.1007/s12649-018-0240-y
  293. Pable A, Gujar P, Khire J (2014) Selection of phytase producing yeast strains for improved mineral mobilization and dephytinization of chickpea flour. J Food Biochem 38:18–27CrossRefGoogle Scholar
  294. Palaniyandi SA, Yang SH, Zhang L, Suh J-W (2013) Effects of actinobacteria on plant disease suppression and growth promotion. Appl Microbiol Biotechnol 97:9621–9636CrossRefPubMedGoogle Scholar
  295. Pandey A, Das N, Kumar B, Rinu K, Trivedi P (2008) Phosphate solubilization by Penicillium spp. isolated from soil samples of Indian Himalayan region. World J Microbiol Biotechnol 24:97–102CrossRefGoogle Scholar
  296. Pasha C, Reddy G (2005) Nutritional and medicinal improvement of black tea by yeast fermentation. Food Chem 89:449–453CrossRefGoogle Scholar
  297. Paul R, Naik S (1997) Denim series-part XIV stoneless stone washing-an innovative concept in denim washings. Text Dye Print 30:13–15Google Scholar
  298. Payen A, Persoz JF (1833) Memoir on diastase, the principal products of its reactions, and their applications to the industrial arts. Ann Chim Phys 53:73–92Google Scholar
  299. Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14:290–295CrossRefPubMedGoogle Scholar
  300. Peleg Z, Reguera M, Tumimbang E, Walia H, Blumwald E (2011) Cytokinin-mediated source/sink modifications improve drought tolerance and increase grain yield in rice under water-stress. Plant Biotechnol J 9:747–758CrossRefPubMedGoogle Scholar
  301. Perin G, Fávero JF, Severo DR, Silva AD, Machado G, Araújo HL, Lilenbaum W, Morsch VM, Schetinger MRC, Jordão RS (2017) Occurrence of oxidative stress in dairy cows seropositives for Brucella abortus. Microb Pathogen 110:196–201CrossRefGoogle Scholar
  302. Piškur J, Rozpędowska E, Polakova S, Merico A, Compagno C (2006) How did Saccharomyces evolve to become a good brewer? Trends Genet 22:183–186CrossRefPubMedGoogle Scholar
  303. Pivarnik LF, Senecal AG, Rand AG (1995) Hydrolytic and transgalactosylic activities of commercial β-galactosidase (lactase) in food processing. Adv Food Nutr Res 38:1–102.  https://doi.org/10.1016/S1043-4526(08)60083-2CrossRefPubMedGoogle Scholar
  304. Ponzoni C, Beneventi E, Cramarossa MR, Raimondi S, Trevisi G, Pagnoni UM, Riva S, Forti L (2007) Laccase-catalyzed dimerization of hydroxystilbenes. Adv Syn Cat 349:1497–1506CrossRefGoogle Scholar
  305. Porter G, Bajita-Locke J, Hue N, Strand D (2004) Manganese solubility and phytotoxicity affected by soil moisture, oxygen levels, and green manure additions. Commun Soil Sci Plant Anal 35:99–116CrossRefGoogle Scholar
  306. Poutanen K (1997) Enzymes: an important tool in the improvement of the quality of cereal foods. Trends Food Sci Technol 8:300–306CrossRefGoogle Scholar
  307. Prasad C (2001) Improving mental health through nutrition: the future. Nutr Neurosci 4:251–272CrossRefPubMedGoogle Scholar
  308. Pretorius IS (2000) Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking. Yeast 16:675–729CrossRefPubMedPubMedCentralGoogle Scholar
  309. Pritchard PE (1992) Studies on the bread-improving mechanism of fungal alpha-amylase. J Biol Edu 26:12–18CrossRefGoogle Scholar
  310. Priyadharsini P, Muthukumar T (2017) The root endophytic fungus Curvularia geniculata from Parthenium hysterophorus roots improves plant growth through phosphate solubilization and phytohormone production. Fungal Ecol 27:69–77CrossRefGoogle Scholar
  311. Promwee A, Issarakraisila M, Intana W, Chamswarng C, Yenjit P (2014) Phosphate solubilization and growth promotion of rubber tree (Hevea brasiliensis Muell. Arg.) by Trichoderma strains. J Agric Sci 6:8–20Google Scholar
  312. Qureshi M, Khare A, Pervez A, Uprit S (2015) Enzymes used in dairy industries. Int J Appl Res 1:523–527Google Scholar
  313. Rana N, Walia A, Gaur A (2013) α-Amylases from microbial sources and its potential applications in various industries. Nat Acad Sci Lett 36:9–17CrossRefGoogle Scholar
  314. Rana KL, Kour D, Yadav AN, Kumar V, Dhaliwal HS (2016a) Biotechnological applications of endophytic microbes associated with barley (Hordeum vulgare L.) growing in Indian Himalayan regions. In: Proceeding of 86th annual session of NASI & symposium on “science, technology and entrepreneurship for human welfare in the Himalayan region”, p 80Google Scholar
  315. Rana KL, Kour D, Yadav AN, Kumar V, Dhaliwal HS (2016b) Endophytic microbes from wheat: Diversity and biotechnological applications for sustainable agriculture. In: Proceeding of 57th Association of Microbiologist of India & international symposium on “microbes and biosphere: what’s new what’s next”, p 453Google Scholar
  316. Rana KL, Kour D, Verma P, Yadav A, Kumar V, Singh D (2017) Diversity and biotechnological applications of endophytic microbes associated with maize (Zea mays L.) growing in Indian Himalayan regions In: Proceeding of national conference on advances in food science and technology, p 41Google Scholar
  317. Rattan R, Shukla L (1991) Influence of different Zn carriers on the utilization of micronutrients by rice. J Indian Soc Soil Sci 39:808–810Google Scholar
  318. Ray A (2012) Application of lipase in industry. Asian J Pharm Technol 2:33–37Google Scholar
  319. Renshaw JC, Robson GD, Trinci AP, Wiebe MG, Livens FR, Collison D, Taylor RJ (2002) Fungal siderophores: structures, functions and applications. Mycol Res 106:1123–1142CrossRefGoogle Scholar
  320. Ribeiro B, Lopes R, Andrade PB, Seabra RM, Gonçalves RF, Baptista P, Quelhas I (2008) Comparative study of phytochemicals and antioxidant potential of wild edible mushroom caps and stipes. Food Chem 110:47–56CrossRefGoogle Scholar
  321. Ribeiro SFL, da Costa GA, dos Santos HED, Montoya QV, Rodrigues A, de Oliveira JM, de Oliveira CM (2018) Antimicrobial activity of crude extracts of endophytic fungi from Oryctanthus alveolatus (Kunth) Kuijt (Mistletoe). Afr J Microbiol Res 12:263–268CrossRefGoogle Scholar
  322. Riffaldi R, Levi-Minzi R, Cardelli R, Palumbo S, Saviozzi A (2006) Soil biological activities in monitoring the bioremediation of diesel oil-contaminated soil. Water Air Soil Pollut 170:3–15CrossRefGoogle Scholar
  323. Robertson G (1977) Pectic enzymes and winemaking. Food Technol NZ 12(32):34–35Google Scholar
  324. Rodger G (2001) Production and properties of mycoprotein as a meat alternative. Food Technol 55:36–41Google Scholar
  325. Romo-Sánchez S, Alves-Baffi M, Arévalo-Villena M, Úbeda-Iranzo J, Briones-Pérez A (2010) Yeast biodiversity from oleic ecosystems: study of their biotechnological properties. Food Microbiol 27:487–492CrossRefGoogle Scholar
  326. Rossi V, Jovicevic L, Nistico V, Orticelli G, Troiani M, Marini S (1993) In vitro antitumor activity of Lentinus edodes. Pharmacol Res 27:109–110CrossRefGoogle Scholar
  327. Rouau X (1993) Investigations into the effects of an enzyme preparation for baking on wheat flour dough pentosans. J Cereal Sci 18:145–157CrossRefGoogle Scholar
  328. Ryan DR, Leukes WD, Burton SG (2005) Fungal bioremediation of phenolic wastewaters in an airlift reactor. Biotechnol Prog 21:1068–1074CrossRefPubMedPubMedCentralGoogle Scholar
  329. Sablayrolles J (2008) Fermented beverages: the example of winemaking, Advances in fermentation technology. Asiatech Publishers, New Delhi, pp 322–347Google Scholar
  330. Saenge C, Cheirsilp B, Suksaroge TT, Bourtoom T (2011) Efficient concomitant production of lipids and carotenoids by oleaginous red yeast Rhodotorula glutinis cultured in palm oil mill effluent and application of lipids for biodiesel production. Biotechnol Bioprocess Eng 16:23–33CrossRefGoogle Scholar
  331. Saha M, Sarkar S, Sarkar B, Sharma BK, Bhattacharjee S, Tribedi P (2016) Microbial siderophores and their potential applications: a review. Environ Sci Pollut Res 23:3984–3999CrossRefGoogle Scholar
  332. Salgado JM, Abrunhosa L, Venâncio A, Domínguez JM, Belo I (2015) Enhancing the bioconversion of winery and olive mill waste mixtures into lignocellulolytic enzymes and animal feed by Aspergillus uvarum using a packed-bed bioreactor. J Agric Food Chem 63:9306–9314CrossRefPubMedPubMedCentralGoogle Scholar
  333. Salleh AB, Razak CNA, Rahman RNZRA, Basri M (2006) Protease: introduction; new lipases and proteases. Nova Science Publishers Inc, New York, pp 23–29Google Scholar
  334. Saravanakumar K, Li Y, Yu C, Wang Q-q, Wang M, Sun J, Gao J-x, Chen J (2017) Effect of Trichoderma harzianum on maize rhizosphere microbiome and biocontrol of Fusarium Stalk rot. Sci Rep 7:1771CrossRefPubMedPubMedCentralGoogle Scholar
  335. Saravanan V, Madhaiyan M, Thangaraju M (2007) Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus. Chemosphere 66:1794–1798CrossRefPubMedPubMedCentralGoogle Scholar
  336. Saravanan VS, Kumar MR, Sa TM (2011) Microbial zinc solubilization and their role on plants. In: Maheshwari D (ed) Bacteria in agrobiology: plant nutrient management. Springer, Berlin, Heidelberg.  https://doi.org/10.1007/978-3-642-21061-7_3CrossRefGoogle Scholar
  337. Savitha S, Sadhasivam S, Swaminathan K, Lin FH (2011) Fungal protease: production, purification and compatibility with laundry detergents and their wash performance. J Taiwan Inst Chem Eng 42:298–304CrossRefGoogle Scholar
  338. Saxena R, Gupta R, Saxena S, Gulati R (2001) Role of fungal enzymes in food processing. Appl Mycol Biotechnol 1:353–386.  https://doi.org/10.1016/S1874-5334(01)80015-0CrossRefGoogle Scholar
  339. Saxena AK, Yadav AN, Kaushik R, Tyagi SP, Shukla L (2015a) Biotechnological applications of microbes isolated from cold environments in agriculture and allied sectors. In: International Conference on “Low Temperature Science and Biotechnological Advances”. Society of low temperature biology, p 104Google Scholar
  340. Saxena J, Saini A, Ravi I, Chandra S, Garg V (2015b) Consortium of phosphate-solubilizing bacteria and fungi for promotion of growth and yield of chickpea (Cicer arietinum). J Crop Improv 29:353–369CrossRefGoogle Scholar
  341. Saxena AK, Yadav AN, Rajawat M, Kaushik R, Kumar R, Kumar M, Prasanna R, Shukla L (2016) Microbial diversity of extreme regions: an unseen heritage and wealth. Indian J Plant Genet Resour 29:246–248CrossRefGoogle Scholar
  342. Schäfer T, Kirk O, Borchert TV, Fuglsang CC, Pedersen S, Salmon S, Olsen HS, Deinhammer R, Lund H (2005) Enzymes for technical applications. Biopolymers 7:377–387Google Scholar
  343. Schiavon M, Pizzeghello D, Muscolo A, Vaccaro S, Francioso O, Nardi S (2010) High molecular size humic substances enhance phenylpropanoid metabolism in maize (Zea mays L.). J Chem Ecol 36:662–669CrossRefPubMedPubMedCentralGoogle Scholar
  344. Schmid A, Dordick J, Hauer B, Kiener A, Wubbolts M, Witholt B (2001) Industrial biocatalysis today and tomorrow. Nature 409:258–268CrossRefPubMedPubMedCentralGoogle Scholar
  345. Schols HA, Geraeds CC, Searle-van Leeuwen MF, Kormelink FJ, Voragen AG (1990) Rhamnogalacturonase: a novel enzyme that degrades the hairy regions of pectins. Carbohydr Res 206:105–115CrossRefGoogle Scholar
  346. Segarra G, Casanova E, Avilés M, Trillas I (2010) Trichoderma asperellum strain T34 controls Fusarium wilt disease in tomato plants in soilless culture through competition for iron. Microb Ecol 59:141–149CrossRefPubMedPubMedCentralGoogle Scholar
  347. Semenova M, Sinitsyna O, Morozova V, Fedorova E, Gusakov A, Okunev O, Sokolova L, Koshelev A, Bubnova T, Vinetskii YP (2006) Use of a preparation from fungal pectin lyase in the food industry. Appl Biochem Microbiol 42:598–602CrossRefGoogle Scholar
  348. Setti L, Giuliani S, Spinozzi G, Pifferi PG (1999) Laccase catalyzed-oxidative coupling of 3-methyl 2-benzothiazolinone hydrazone and methoxyphenols. Enzyme Microbial Technol 25:285–289CrossRefGoogle Scholar
  349. Shahani K, Arnold R, Kilara A, Dwivedi B (1976) Role of microbial enzymes in flavor development in foods. Biotechnol Bioeng 18:891–907CrossRefGoogle Scholar
  350. Shallom D, Shoham Y (2003) Microbial hemicellulases. Curr Opin Microbiol 6:219–228CrossRefPubMedPubMedCentralGoogle Scholar
  351. Shanmugam V, Yadav K (1995) Extracellular production of alpha-rhamnosidase by Rhizopus nigricans. Indian J Exp Biol 33:705–707PubMedPubMedCentralGoogle Scholar
  352. Sharma H, Robinson E (1983) Fungal colonization during glyphosate induced desiccation and dew-retting of flax cultivars. Technical report, Lambeg Industrial Research Association, No. 2281, pp 11Google Scholar
  353. Sharma R, Chisti Y, Banerjee UC (2001) Production, purification, characterization, and applications of lipases. Biotechnol Adv 19:627–662CrossRefPubMedPubMedCentralGoogle Scholar
  354. Sharma S, Pandey M, Saharan B (2002) Fermentation of starch to ethanol by an amylolytic yeast Saccharomyces diastaticus SM-10. Indian J Exp Biol 40:325–328PubMedPubMedCentralGoogle Scholar
  355. She Q-B, Ng T-B, Liu W-K (1998) A novel lectin with potent immunomodulatory activity isolated from both fruiting bodies and cultured mycelia of the edible mushroom Volvariella volvacea. Biochem Biophys Res Commun 247:106–111CrossRefPubMedPubMedCentralGoogle Scholar
  356. Sheu F, Chien P-J, Chien A-L, Chen Y-F, Chin K-L (2004) Isolation and characterization of an immunomodulatory protein (APP) from the Jew’s Ear mushroom Auricularia polytricha. Food Chem 87:593–600CrossRefGoogle Scholar
  357. Silar P (2013) La mycologie au début du 21ème siècle: crise et renouveau. Biol Aujourdhui 207:269–275CrossRefPubMedPubMedCentralGoogle Scholar
  358. Singh P, Kumar S (2019) Microbial enzyme in food biotechnology. Enzyme Food Biotechnol.  https://doi.org/10.1016/B978-0-12-813280-7.00002-5
  359. Singh P, Yadav SK (2018) Feed enzymes: source and applications. In: Kuddus M (ed) Enzymes in food technology. Springer, Singapore.  https://doi.org/10.1007/978-981-13-1933-4_17CrossRefGoogle Scholar
  360. Singh S, Wakeling L, Gamlath S (2007) Retention of essential amino acids during extrusion of protein and reducing sugars. J Agric Food Chem 55:8779–8786CrossRefPubMedPubMedCentralGoogle Scholar
  361. Singh R, Kumar M, Mittal A, Mehta PK (2016a) Microbial enzymes: industrial progress in 21st century. 3 Biotech 6:174.  https://doi.org/10.1007/s13205-016-0485-8CrossRefPubMedPubMedCentralGoogle Scholar
  362. Singh RN, Gaba S, Yadav AN, Gaur P, Gulati S, Kaushik R, Saxena AK (2016b) First, High quality draft genome sequence of a plant growth promoting and Cold Active Enzymes producing psychrotrophic Arthrobacter agilis strain L77. Stand Genomic Sci 11:54.  https://doi.org/10.1186/s40793-016-0176-4CrossRefPubMedPubMedCentralGoogle Scholar
  363. Sinha A, Khare SK (2013) Manganese: its speciation, pollution and microbial mitigation. Int J Appl Sci Biotechnol 1:162–170CrossRefGoogle Scholar
  364. Smart J, Crow V, Thomas T (1985) Lactose hydrolysis in milk and whey using beta-galactosidase from Streptococcus thermophilus. N Z J Dairy Sci Technol 20:43–56Google Scholar
  365. Smith T (2005) Making artisan cheese. Quary, Beverly. https://www.brouwland.com/en/qr/094.006.4Google Scholar
  366. Soares I, Távora Z, Barcelos RP, Baroni S (2012) Microorganism-produced enzymes in the food industry. In: Valdez DB (ed) Food industry, scientific, health and social aspects of the food industry, pp 83–94.  https://doi.org/10.5772/31256CrossRefGoogle Scholar
  367. Soccol C, Dalla Santa H, Rubel R, Vitola F, Leifa F, Pandey A (2008) Mushrooms: a promising source to produce nutraceuticals and pharmaceutical byproducts. Curr Bioprocess Food Indus 1:439–448Google Scholar
  368. Son H-J, Park G-T, Cha M-S, Heo M-S (2006) Solubilization of insoluble inorganic phosphates by a novel salt-and pH-tolerant Pantoea agglomerans R-42 isolated from soybean rhizosphere. Biores Technol 97:204–210CrossRefGoogle Scholar
  369. Sørensen JF, Kragh KM, Sibbesen O, Delcour J, Goesaert H, Svensson B, Tahir TA, Brufau J, Perez-Vendrell AM, Bellincampi D (2004) Potential role of glycosidase inhibitors in industrial biotechnological applications. Biochim Biophys Acta Prot Proteom 1696:275–287CrossRefGoogle Scholar
  370. Speckbacher V, Zeilinger S (2018) Secondary metabolites of mycoparasitic fungi.  https://doi.org/10.5772/intechopen.75133
  371. Spence CA, Lakshmanan V, Donofrio N, Bais HP (2015) Crucial roles of abscisic acid biogenesis in virulence of rice blast fungus Magnaporthe oryzae. Front Plant Sci 6:1082.  https://doi.org/10.3389/fpls.2015.01082CrossRefPubMedPubMedCentralGoogle Scholar
  372. Srivastava AK, Kumar S, Kaushik R, Saxena AK, Padaria JC, Gupta A, Pal KK, Gujar GT, Sharma A, Singh P (2013) Diversity analysis of Bacillus and other predominant genera in extreme environments and its utilization in Agriculture.  https://doi.org/10.13140/2.1.1357.3927
  373. Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502CrossRefPubMedPubMedCentralGoogle Scholar
  374. Strobel G, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic microorganisms. J Nat Prod 67:257–268CrossRefGoogle Scholar
  375. Stroh W (1998) Industrial enzymes market. Gen Eng News 18:11–38Google Scholar
  376. Suderman RJ, Dittmer NT, Kanost MR, Kramer KJ (2006) Model reactions for insect cuticle sclerotization: cross-linking of recombinant cuticular proteins upon their laccase-catalyzed oxidative conjugation with catechols. Insect Biochem Mol Biol 36:353–365CrossRefPubMedPubMedCentralGoogle Scholar
  377. Suman A, Yadav AN, Verma P (2016) Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. In: Singh D, Abhilash P, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity, research perspectives. Springer-Verlag, India, pp 117–143.  https://doi.org/10.1007/978-81-322-2647-5_7CrossRefGoogle Scholar
  378. Sun X, Zhao Y, Jia J, Xie J, Cheng J, Liu H, Jiang D, Fu Y (2017) Uninterrupted expression of CmSIT1 in a sclerotial parasite Coniothyrium minitans leads to reduced growth and enhanced antifungal ability. Front Microbiol 8:2208.  https://doi.org/10.3389/fmicb.2017.02208CrossRefPubMedPubMedCentralGoogle Scholar
  379. Supaphon P, Keawpiboon C, Preedanon S, Phongpaichit S, Rukachaisirikul V (2018) Isolation and antimicrobial activities of fungi derived from Nymphaea lotus and Nymphaea stellata. Mycoscience 59:415–423CrossRefGoogle Scholar
  380. Sutjaritvorakul T, Gadd GM, Suntornvongsagul K, Whalley AJ, Roengsumran S, Sihanonth P (2013) Solubilization and transformation of insoluble zinc compounds by fungi isolated from a zinc mine. Environ Asia 6:42–46Google Scholar
  381. Sutjaritvorakul T, Chutipaijit S, Sihanonth P (2017) Solubilization and bioprecipitation of zinc oxide nanoparticles by fungi isolated from zinc sulfide mineral ores. Mater Today 4:6562–6566Google Scholar
  382. Swain SM, Singh DP (2005) Tall tales from sly dwarves: novel functions of gibberellins in plant development. Trends Plant Sci 10:123–129CrossRefPubMedPubMedCentralGoogle Scholar
  383. Szebesczyk A, Olshvang E, Shanzer A, Carver PL, Gumienna-Kontecka E (2016) Harnessing the power of fungal siderophores for the imaging and treatment of human diseases. Coord Chem Rev 327:84–109CrossRefGoogle Scholar
  384. Takiguchi Y (1962) Annual reports of Takamine Institute, Tokyo. Agric Soc Jpn 14:101Google Scholar
  385. Taniwaki MH, da Silva N, Banhe AA, Iamanaka BT (2001) Comparison of culture media, simplate, and petrifilm for enumeration of yeasts and molds in food. J Food Prot 64:1592–1596CrossRefPubMedPubMedCentralGoogle Scholar
  386. Taylor MJ, Richardson T (1979) Applications of microbial enzymes in food systems and in biotechnology. Adv Appl Microbiol 25:7–35CrossRefPubMedPubMedCentralGoogle Scholar
  387. Téllez-Jurado A, Arana-Cuenca A, Becerra AG, Viniegra-González G, Loera O (2006) Expression of a heterologous laccase by Aspergillus niger cultured by solid-state and submerged fermentations. Enzyme Microb Technol 38:665–669CrossRefGoogle Scholar
  388. Tsai S-Y, Tsai H-L, Mau J-L (2007) Antioxidant properties of Agaricus blazei, Agrocybe cylindracea, and Boletus edulis. LWT Food Sci Technol 40:1392–1402CrossRefGoogle Scholar
  389. Turnbull WH, Leeds AR, Edwards DG (1992) Mycoprotein reduces blood lipids in free-living subjects. Am J Clin Nutr 55:415–419CrossRefPubMedPubMedCentralGoogle Scholar
  390. Uchida H, Fukuda T, Miyamoto H, Kawabata T, Suzuki M, Uwajima T (2001) Polymerization of bisphenol A by purified laccase from Trametes villosa. Biochem Biophys Res Commun 287:355–358CrossRefPubMedPubMedCentralGoogle Scholar
  391. Ullah I, Khan NA, Jadoon MA, Ur H, Rehman HK, Rehman MU, Hayat A, Ali S, Rehman M, Khan MA (2017) Isolation and identification of different Rhizospheres fungi of Mansehra region, Pakistan. J Entomol Zool Stud 5:437–442Google Scholar
  392. Ulrich JM (1960) Auxin production by mycorrhizal fungi. Physiol Plant 13:429–443CrossRefGoogle Scholar
  393. Ushasree M, Vidya J, Pandey A (2017) Other enzymes: phytases. In: Pandey A, Negi S, Socco NC (eds) Current developments in biotechnology and bioengineering, vol 8. Elsevier, pp 309–333.  https://doi.org/10.1016/B978-0-444-63662-1.00014-2
  394. Uyama H, Kobayashi S (2002) Enzyme-catalyzed polymerization to functional polymers. J Mol Catalysis Enzyme 19:117–127CrossRefGoogle Scholar
  395. Vabre S (2015) Le sacre du roquefort. Presses Universitaires FrançoisGoogle Scholar
  396. Valles BS, Bedriñana RP, Tascón NF, Simón AQ, Madrera RR (2007) Yeast species associated with the spontaneous fermentation of cider. Food Microbiol 24:25–31CrossRefPubMedPubMedCentralGoogle Scholar
  397. Valverde ME, Hernández-Pérez T, Paredes-Lopez O (2012) Huitlacoche—a 21st century culinary delight originated in the Aztec times, Chapter 7. In: Hispanic foods: chemistry and bioactive compounds, pp 83–100.  https://doi.org/10.1021/bk-2012-1109.ch007CrossRefGoogle Scholar
  398. Van Der Maarel MJ, Van der Veen B, Uitdehaag JC, Leemhuis H, Dijkhuizen L (2002) Properties and applications of starch-converting enzymes of the α-amylase family. J Biotechnol 94:137–155CrossRefPubMedGoogle Scholar
  399. Van Leeuwen J, Hu Z, Yi T, Pometto AI, Jin B (2003) Kinetic model for selective cultivation of microfungi in a microscreen process for food processing wastewater treatment and biomass production. Acta Biotechnol 23:289–300CrossRefGoogle Scholar
  400. Van Oort M (2009) Enzymes in bread making. In: Whitehurst RJ, Van Oort M (eds) Enzymes in food technology. Wiley-Blackwell, Oxford, UKGoogle Scholar
  401. Velioglu Z, Urek RO (2015) Optimization of cultural conditions for biosurfactant production by Pleurotus djamor in solid state fermentation. J Biosci Bioeng 120:526–531CrossRefPubMedGoogle Scholar
  402. Verma D, Satyanarayana T (2012) Molecular approaches for ameliorating microbial xylanases. Biores Technol 117:360–367CrossRefGoogle Scholar
  403. Verma VC, Kharwar RN, Strobel GA (2009) Chemical and functional diversity of natural products from plant associated endophytic fungi. Nat Prod Commun 4:1511–1532PubMedGoogle Scholar
  404. Verma P, Yadav AN, Kazy SK, Saxena AK, Suman A (2013) Elucidating the diversity and plant growth promoting attributes of wheat (Triticum aestivum) associated acidotolerant bacteria from southern hills zone of India. Natl J Life Sci 10:219–227Google Scholar
  405. Verma P, Yadav AN, Kazy SK, Saxena AK, Suman A (2014) Evaluating the diversity and phylogeny of plant growth promoting bacteria associated with wheat (Triticum aestivum) growing in central zone of India. Int J Curr Microbiol Appl Sci 3:432–447Google Scholar
  406. Verma P, Yadav AN, Khannam KS, Panjiar N, Kumar S, Saxena AK, Suman A (2015a) Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the northern hills zone of India. Ann Microbiol 65:1885–1899CrossRefGoogle Scholar
  407. Verma P, Yadav AN, Shukla L, Saxena AK, Suman A (2015b) Alleviation of cold stress in wheat seedlings by Bacillus amyloliquefaciens IARI-HHS2-30, an endophytic psychrotolerant K-solubilizing bacterium from NW Indian Himalayas. Natl J Life Sci 12:105–110Google Scholar
  408. Verma P, Yadav AN, Shukla L, Saxena AK, Suman A (2015c) Hydrolytic enzymes production by thermotolerant Bacillus altitudinis IARI-MB-9 and Gulbenkiania mobilis IARI-MB-18 isolated from Manikaran hot springs. Int J Adv Res 3:1241–1250Google Scholar
  409. Verma P, Yadav AN, Khannam KS, Kumar S, Saxena AK, Suman A (2016a) Molecular diversity and multifarious plant growth promoting attributes of Bacilli associated with wheat (Triticum aestivum L.) rhizosphere from six diverse agro-ecological zones of India. J Basic Microbiol 56:44–58CrossRefPubMedGoogle Scholar
  410. Verma P, Yadav AN, Khannam KS, Mishra S, Kumar S, Saxena AK, Suman A (2016b) Appraisal of diversity and functional attributes of thermotolerant wheat associated bacteria from the peninsular zone of India. Saudi J Biol Sci.  https://doi.org/10.1016/j.sjbs.2016.01.042
  411. Verma P, Yadav AN, Khannam KS, Saxena AK, Suman A (2017a) Potassium-solubilizing microbes: diversity, distribution, and role in plant growth promotion. In: Panpatte DG, Jhala YK, Vyas RV, Shelat HN (eds) Microorganisms for green revolution-volume 1: microbes for sustainable crop production. Springer, Singapore, pp 125–149.  https://doi.org/10.1007/978-981-10-6241-4_7CrossRefGoogle Scholar
  412. Verma P, Yadav AN, Kumar V, Khan A, Saxena AK (2017b) Microbes in termite management: potential role and strategies. In: Khan MA, Ahmad W (eds) Termites and sustainable management: volume 2 – economic losses and management. Springer International Publishing, Cham, pp 197–217.  https://doi.org/10.1007/978-3-319-68726-1_9CrossRefGoogle Scholar
  413. Verma P, Yadav AN, Kumar V, Singh DP, Saxena AK (2017c) Beneficial plant-microbes interactions: biodiversity of microbes from diverse extreme environments and its impact for crops improvement. In: Singh DP, Singh HB, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives. Springer Nature, Singapore, pp 543–580.  https://doi.org/10.1007/978-981-10-6593-4_22CrossRefGoogle Scholar
  414. Vishwanatha K, Rao AA, Singh SA (2009) Characterisation of acid protease expressed from Aspergillus oryzae MTCC 5341. Food Chem 114:402–407CrossRefGoogle Scholar
  415. Vishwanatha KS, Rao AA, Singh SA (2010) Production and characterization of a milk-clotting enzyme from Aspergillus oryzae MTCC 5341. Appl Microbiol Biotechnol 85:1849–1859CrossRefPubMedGoogle Scholar
  416. Vulfson EN (1994) Industrial applications of lipases. In: Peterson SB, Woolley P (eds) Lipases—their structure, biochemistry and applications. Cambridge University Press, Cambridge, pp 271–288Google Scholar
  417. Wahid OAA, Mehana TA (2000) Impact of phosphate-solubilizing fungi on the yield and phosphorus-uptake by wheat and faba bean plants. Microbiol Res 155:221–227CrossRefPubMedGoogle Scholar
  418. Wang X-J, Bai J-G, Liang Y-X (2006) Optimization of multienzyme production by two mixed strains in solid-state fermentation. Appl Microbiol Biotechnol 73:533–540CrossRefPubMedGoogle Scholar
  419. Wang Y, Ma R, Li S, Gong M, Yao B, Bai Y, Gu J (2018) An alkaline and surfactant-tolerant lipase from Trichoderma lentiforme ACCC30425 with high application potential in the detergent industry. AMB Express.  https://doi.org/10.1186/s13568-018-0618-z
  420. Waqas M, Khan AL, Kamran M, Hamayun M, Kang S-M, Kim Y-H, Lee I-J (2012) Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Molecules 17:10754–10773CrossRefPubMedPubMedCentralGoogle Scholar
  421. Watmough SA, Eimers MC, Dillon PJ (2007) Manganese cycling in central Ontario forests: response to soil acidification. Appl Geochem 22:1241–1247CrossRefGoogle Scholar
  422. Wei Z, Hillier S, Gadd GM (2012) Biotransformation of manganese oxides by fungi: solubilization and production of manganese oxalate biominerals. Environ Microbiol 14:1744–1753CrossRefPubMedGoogle Scholar
  423. Wiebe M (2002) Myco-protein from Fusarium venenatum: a well-established product for human consumption. Appl Microbiol Biotechnol 58:421–427CrossRefPubMedGoogle Scholar
  424. Wiebe MG (2004) Quorn TM myco-protein-overview of a successful fungal product. Mycologist 18:17–20CrossRefGoogle Scholar
  425. Wilkinson M (1995) Cheese–chemistry, physics and microbiology–general aspects. Chapman & Hall, LondonGoogle Scholar
  426. Windish WW, Mhatre NS (1965) Microbial amylases. Adv Appl Microbiol 7:273–304.  https://doi.org/10.1016/S0065-2164(08)70389-7CrossRefPubMedGoogle Scholar
  427. Winkelmann G (2002) Microbial siderophore-mediated transport. Biochem Soc Trans 4:691–696.  https://doi.org/10.1042/bst0300691CrossRefGoogle Scholar
  428. Wiyakrutta S, Sriubolmas N, Panphut W, Thongon N, Danwisetkanjana K, Ruangrungsi N, Meevootisom V (2004) Endophytic fungi with anti-microbial, anti-cancer and anti-malarial activities isolated from Thai medicinal plants. World J Microbiol Biotechnol 20:265–272CrossRefGoogle Scholar
  429. Wu S, Cao Z, Li Z, Cheung K, Wong M (2005) Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma 125:155–166CrossRefGoogle Scholar
  430. Yadav AN (2015) Bacterial diversity of cold deserts and mining of genes for low temperature tolerance. Ph.D. thesis, IARI, New Delhi/BIT, Ranchi, pp 234,  https://doi.org/10.13140/RG.2.1.2948.1283/2.
  431. Yadav AN (2017) Agriculturally important microbiomes: biodiversity and multifarious PGP attributes for amelioration of diverse abiotic stresses in crops for sustainable agriculture. Biomed J Sci Tech Res 1:1–4Google Scholar
  432. Yadav AN (2018) Biodiversity and biotechnological applications of host-specific endophytic fungi for sustainable agriculture and allied sectors. Acta Sci Microbiol 1:01–05Google Scholar
  433. Yadav AN, Saxena AK (2018) Biodiversity and biotechnological applications of halophilic microbes for sustainable agriculture. J Appl Biol Biotechnol 6:1–8Google Scholar
  434. Yadav AN, Yadav N (2018a) Stress-adaptive microbes for plant growth promotion and alleviation of drought stress in plants. Acta Sci Agric 2:85–88Google Scholar
  435. Yadav N, Yadav A (2018b) Biodiversity and biotechnological applications of novel plant growth promoting methylotrophs. J Appl Biotechnol Bioeng 5:342–344Google Scholar
  436. Yadav AN, Sharma D, Gulati S, Singh S, Kaushik R, Dey R, Pal KK, Saxena AK (2015a) Haloarchaea endowed with phosphorus solubilization attribute implicated in phosphorus cycle. Sci Rep 5.  https://doi.org/10.1038/srep12293
  437. Yadav AN, Verma P, Kumar M, Pal KK, Dey R, Gupta A, Padaria JC, Gujar GT, Kumar S, Suman A, Prasanna R, Saxena AK (2015b) Diversity and phylogenetic profiling of niche-specific Bacilli from extreme environments of India. Ann Microbiol 65:611–629CrossRefGoogle Scholar
  438. Yadav AN, Rana KL, Kumar V, Dhaliwal HS (2016a) Phosphorus solubilizing endophytic microbes: potential application for sustainable agriculture. EU Voice 2:21–22Google Scholar
  439. Yadav AN, Sachan SG, Verma P, Kaushik R, Saxena AK (2016b) Cold active hydrolytic enzymes production by psychrotrophic Bacilli isolated from three sub-glacial lakes of NW Indian Himalayas. J Basic Microbiol 56:294–307CrossRefGoogle Scholar
  440. Yadav AN, Sachan SG, Verma P, Saxena AK (2016c) Bioprospecting of plant growth promoting psychrotrophic Bacilli from cold desert of north western Indian Himalayas. Indian J Exp Biol 54:142–150PubMedGoogle Scholar
  441. Yadav AN, Kumar R, Kumar S, Kumar V, Sugitha T, Singh B, Chauhan VS, Dhaliwal HS, Saxena AK (2017a) Beneficial microbiomes: biodiversity and potential biotechnological applications for sustainable agriculture and human health. J Appl Biol Biotechnol 5:1–13CrossRefGoogle Scholar
  442. Yadav AN, Verma P, Kaushik R, Dhaliwal HS, Saxena AK (2017b) Archaea endowed with plant growth promoting attributes. EC Microbiol 8:294–298Google Scholar
  443. Yadav AN, Verma P, Kumar R, Kumar V, Kumar K (2017c) Current applications and future prospects of eco-friendly microbes. EU Voice 3Google Scholar
  444. Yadav AN, Verma P, Kumar V, Sachan SG, Saxena AK (2017d) Extreme cold environments: a suitable niche for selection of novel psychrotrophic microbes for biotechnological applications. Adv Biotechnol Microbiol 2:1–4CrossRefGoogle Scholar
  445. Yadav AN, Verma P, Sachan SG, Saxena AK (2017e) Biodiversity and biotechnological applications of psychrotrophic microbes isolated from Indian Himalayan regions. EC Microbiol ECO 01:48–54Google Scholar
  446. Yadav AN, Verma P, Singh B, Chauhan VS, Suman A, Saxena AK (2017f) Plant growth promoting bacteria: biodiversity and multifunctional attributes for sustainable agriculture. Adv Biotechnol Microbiol 5:1–16Google Scholar
  447. Yadav AN, Kumar V, Prasad R, Saxena AK, Dhaliwal HS (2018a) Microbiome in crops: diversity, distribution and potential role in crops improvements. In: Prasad R, Gill SS, Tuteja N (eds) Crop improvement through microbial biotechnology. Elsevier, San Diego, pp 305–332CrossRefGoogle Scholar
  448. Yadav AN, Verma P, Kumar S, Kumar V, Kumar M, Singh BP, Saxena AK, Dhaliwal HS (2018b) Actinobacteria from rhizosphere: molecular diversity, distributions and potential biotechnological applications. In: Singh B, Gupta V, Passari A (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier Science, San Diego, pp 13–41.  https://doi.org/10.1016/B978-0-444-63994-3.00002-3CrossRefGoogle Scholar
  449. Yadav AN, Verma P, Kumar V, Sangwan P, Mishra S, Panjiar N, Gupta VK, Saxena AK (2018c) Biodiversity of the genus Penicillium in different habitats. In: Gupta VK, Rodriguez-Couto S (eds) New and future developments in microbial biotechnology and bioengineering, Penicillium system properties and applications. Elsevier, Amsterdam, pp 3–18.  https://doi.org/10.1016/B978-0-444-63501-3.00001-6CrossRefGoogle Scholar
  450. Yadav AN, Verma P, Sachan SG, Kaushik R, Saxena AK (2018d) Psychrotrophic microbiomes: molecular diversity and beneficial role in plant growth promotion and soil health. In: Panpatte DG, Jhala YK, Shelat HN, Vyas RV (eds) Microorganisms for green revolution-volume 2: microbes for sustainable agro-ecosystem. Springer, Singapore, pp 197–240.  https://doi.org/10.1007/978-981-10-7146-1_11CrossRefGoogle Scholar
  451. Yamasaki M, Yasui T, Arima K (1964) Pectic enzymes in the clarification of apple juice: part I. Study on the clarification reaction in a simplified model. Agric Biol Chem 28:779–787Google Scholar
  452. Yuan Y, Feng H, Wang L, Li Z, Shi Y, Zhao L, Feng Z, Zhu H (2017) Potential of endophytic fungi isolated from cotton roots for biological control against verticillium wilt disease. PLoS One 12:e0170557CrossRefPubMedPubMedCentralGoogle Scholar
  453. Zaks A (2001) Industrial biocatalysis. Curr Opin Chem Biol 5:130–136CrossRefPubMedPubMedCentralGoogle Scholar
  454. Zambare V, Nilegaonkar S, Kanekar P (2011) A novel extracellular protease from Pseudomonas aeruginosa MCM B-327: enzyme production and its partial characterization. N Biotechnol 28:173–181CrossRefPubMedPubMedCentralGoogle Scholar
  455. Zhang Z, Dong J, Zhang D, Wang J, Qin X, Liu B, Xu X, Zhang W, Zhang Y (2018) Expression and characterization of a pectin methylesterase from Aspergillus niger ZJ5 and its application in fruit processing. J Biosci Bioeng 126:690–696CrossRefPubMedPubMedCentralGoogle Scholar
  456. Zheng S, Yang M, Yang Z (2005) Biomass production of yeast isolate from salad oil manufacturing wastewater. Biores Technol 96:1183–1187CrossRefGoogle Scholar
  457. Zheng S, Li C, Ng TB, Wang HX (2007) A lectin with mitogenic activity from the edible wild mushroom Boletus edulis. Process Biochem 42:1620–1624CrossRefGoogle Scholar
  458. Zhou LS, Tang K, Guo SX (2018) The plant growth-promoting fungus (PGPF) Alternaria sp. A13 markedly enhances salvia miltiorrhiza root growth and active ingredient accumulation under greenhouse and field conditions. Int J Mol Sci 19:270.  https://doi.org/10.3390/ijms19010270CrossRefPubMedCentralGoogle Scholar
  459. Zuo Y, Zhang F (2011) Soil and crop management strategies to prevent iron deficiency in crops. Plant and Soil 339:83–95CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Divjot Kour
    • 1
  • Kusam Lata Rana
    • 1
  • Neelam Yadav
    • 2
  • Ajar Nath Yadav
    • 1
    Email author
  • Joginder Singh
    • 3
  • Ali A. Rastegari
    • 4
  • Anil Kumar Saxena
    • 5
  1. 1.Department of Biotechnology, Akal College of AgricultureEternal UniversityBaru Sahib, SirmourIndia
  2. 2.Gopi Nath P.G. College, Veer Bahadur Singh Purvanchal UniversityDeoli-Salamatpur, GhazipurIndia
  3. 3.Department of MicrobiologyLovely Professional UniversityPhagwaraIndia
  4. 4.Department of Molecular and Cell Biochemistry, Falavarjan BranchIslamic Azad UniversityIsfahanIran
  5. 5.ICAR-National Bureau of Agriculturally Important MicroorganismsKusmaur, MauIndia

Personalised recommendations