Advertisement

Approximation Algorithms for Graph Burning

  • Anthony BonatoEmail author
  • Shahin Kamali
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11436)

Abstract

Numerous approaches study the vulnerability of networks against social contagion. Graph burning studies how fast a contagion, modeled as a set of fires, spreads in a graph. The burning process takes place in synchronous, discrete rounds. In each round, a fire breaks out at a vertex, and the fire spreads to all vertices that are adjacent to a burning vertex. The selection of vertices where fires start defines a schedule that indicates the number of rounds required to burn all vertices. Given a graph, the objective of an algorithm is to find a schedule that minimizes the number of rounds to burn graph. Finding the optimal schedule is known to be NP-hard, and the problem remains NP-hard when the graph is a tree or a set of disjoint paths. The only known algorithm is an approximation algorithm for disjoint paths, which has an approximation ratio of 1.5.

We present approximation algorithms for graph burning. For general graphs, we introduce an algorithm with an approximation ratio of 3. When the graph is a tree, we present another algorithm with approximation ratio 2. Moreover, we consider a setting where the graph is a forest of disjoint paths. In this setting, when the number of paths is constant, we provide an optimal algorithm which runs in polynomial time. When the number of paths is more than a constant, we provide two approximation schemes: first, under a regularity condition where paths have asymptotically equal lengths, we show the problem admits an approximation scheme which is fully polynomial. Second, for a general setting where the regularity condition does not necessarily hold, we provide another approximation scheme which runs in time polynomial in the size of the graph.

Keywords

Approximation algorithms Graph algorithms Graph burning problem Information dissemination Social contagion 

References

  1. 1.
    Anshelevich, E., Chakrabarty, D., Hate, A., Swamy, C.: Approximability of the firefighter problem - computing cuts over time. Algorithmica 62(1–2), 520–536 (2012)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Bessy, S., Bonato, A., Janssen, J.C.M., Rautenbach, D., Roshanbin, E.: Burning a graph is hard. Discret. Appl. Math. 232, 73–87 (2017)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Bessy, S., Bonato, A., Janssen, J.C.M., Rautenbach, D., Roshanbin, E.: Bounds on the burning number. Discret. Appl. Math. 235, 16–22 (2018)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Bonato, A., Gunderson, K., Shaw, A.: Burning the plane: densities of the infinite cartesian grid. Preprint (2019)Google Scholar
  5. 5.
    Bonato, A., Janssen, J., Roshanbin, E.: Burning a graph as a model of social contagion. In: Bonato, A., Graham, F.C., Prałat, P. (eds.) WAW 2014. LNCS, vol. 8882, pp. 13–22. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-13123-8_2zbMATHGoogle Scholar
  6. 6.
    Bonato, A., Janssen, J., Roshanbin, E.: How to burn a graph. Internet Math. 12(1–2), 85–100 (2016)MathSciNetGoogle Scholar
  7. 7.
    Bonato, A., Lidbetter, T.: Bounds on the burning numbers of spiders and path-forests. ArXiv e-prints, July 2017Google Scholar
  8. 8.
    Bond, R.M., et al.: A 61-million-person experiment in social influence and political mobilization. Nature 489(7415), 295–298 (2012)Google Scholar
  9. 9.
    Cai, L., Verbin, E., Yang, L.: Firefighting on trees: (1\(-1\)/e)-approximation, fixed parameter tractability and a subexponential algorithm. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 258–269. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-92182-0_25Google Scholar
  10. 10.
    Chen, N., Gravin, N., Lu, P.: On the approximability of budget feasible mechanisms. In: Proceedings of Annual ACM-SIAM Symposium on Discrete Algorithms SODA, pp. 685–699 (2011)Google Scholar
  11. 11.
    Chen, W., et al.: Influence maximization in social networks when negative opinions may emerge and propagate. In: Proceedings of SIAM International Conference on Data Mining, SDM, pp. 379–390 (2011)Google Scholar
  12. 12.
    Chen, W., Wang, Y., Yang, S.: Efficient influence maximization in social networks. In: Proceedings of ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), pp. 199–208 (2009)Google Scholar
  13. 13.
    Czumaj, A., Rytter, W.: Broadcasting algorithms in radio networks with unknown topology. J. Algorithms 60(2), 115–143 (2006)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Domingos, P.M., Richardson, M.: Mining the network value of customers. In: Proceedings of ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), pp. 57–66 (2001)Google Scholar
  15. 15.
    Elkin, M., Kortsarz, G.: Sublogarithmic approximation for telephone multicast. J. Comput. Syst. Sci. 72(4), 648–659 (2006)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Fajardo, D., Gardner, L.M.: Inferring contagion patterns in social contact networks with limited infection data. Netw. Spat. Econ. 13(4), 399–426 (2013)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Assmann, S.F.: Problems in discrete applied mathematics. Ph.D. thesis, MIT (1983)Google Scholar
  18. 18.
    Finbow, S., King, A.D., MacGillivray, G., Rizzi, R.: The firefighter problem for graphs of maximum degree three. Discret. Math. 307(16), 2094–2105 (2007)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Fitzpatrick, S.L., Li, Q.: Firefighting on trees: how bad is the greedy algorithm? Congr. Numer. 145, 187–192 (2000)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, Stuttgart (1979)zbMATHGoogle Scholar
  21. 21.
    Ghaffari, M., Haeupler, B., Khabbazian, M.: Randomized broadcast in radio networks with collision detection. Distrib. Comput. 28(6), 407–422 (2015)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Hedetniemi, S.M., Hedetniemi, S.T., Liestman, A.L.: A survey of gossiping and broadcasting in communication networks. Networks 18(4), 319–349 (1988)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Jansen, K., Solis-Oba, R.: An asymptotic fully polynomial time approximation scheme for bin covering. Theor. Comput. Sci. 306(1–3), 543–551 (2003)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Kempe, D., Kleinberg, J.M., Tardos, É: Maximizing the spread of influence through a social network. In: Proceedings of the International Conference on Knowledge Discovery and Data Mining (SIGKDD), pp. 137–146 (2003)Google Scholar
  25. 25.
    Kempe, D., Kleinberg, J., Tardos, É.: Influential nodes in a diffusion model for social networks. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1127–1138. Springer, Heidelberg (2005).  https://doi.org/10.1007/11523468_91Google Scholar
  26. 26.
    Kempe, D., Kleinberg, J.M., Tardos, É.: Maximizing the spread of influence through a social network. Theory Comput. 11, 105–147 (2015)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Kleinberg, J.M.: Cascading behavior in social and economic networks. In: Proceedings of ACM Conference on Electronic Commerce (EC), pp. 1–4 (2013)Google Scholar
  28. 28.
    Kowalski, D.R., Pelc, A.: Optimal deterministic broadcasting in known topology radio networks. Distrib. Comput. 19(3), 185–195 (2007)zbMATHGoogle Scholar
  29. 29.
    Kramer, A.D.I.: The spread of emotion via Facebook. In: CHI Conference on Human Factors in Computing Systems, (CHI), pp. 767–770 (2012)Google Scholar
  30. 30.
    Kramer, A.D.I., Guillory, J.E., Hancock, J.T.: Experimental evidence of massive-scale emotional contagion through social networks. In: Proceedings of the National Academy of Sciences, pp. 8788–8790 (2014)Google Scholar
  31. 31.
    Land, M.R., Lu, L.: An upper bound on the burning number of graphs. In: Bonato, A., Graham, F.C., Prałat, P. (eds.) WAW 2016. LNCS, vol. 10088, pp. 1–8. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-49787-7_1Google Scholar
  32. 32.
    Mitsche, D., Pralat, P., Roshanbin, E.: Burning graphs: a probabilistic perspective. Graphs Comb. 33(2), 449–471 (2017)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Mitsche, D., Pralat, P., Roshanbin, E.: Burning number of graph products. Theor. Comput. Sci. 746, 124–135 (2018)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Nikzad, A., Ravi, R.: Sending secrets swiftly: approximation algorithms for generalized multicast problems. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8573, pp. 568–607. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-43951-7_48Google Scholar
  35. 35.
    Peleg, D.: Time-efficient broadcasting in radio networks: a review. In: Janowski, T., Mohanty, H. (eds.) ICDCIT 2007. LNCS, vol. 4882, pp. 1–18. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-77115-9_1Google Scholar
  36. 36.
    Ravi, R.: Rapid rumor ramification: approximating the minimum broadcast time (extended abstract). In: Proceedings of Symposium on Foundations of Computer Science (FOCS), pp. 202–213 (1994)Google Scholar
  37. 37.
    Richardson, M., Domingos, P.M.: Mining knowledge-sharing sites for viral marketing. In: Proceedings of the ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), pp. 61–70 (2002)Google Scholar
  38. 38.
    Schindelhauer, C.: On the inapproximability of broadcasting time. In: Jansen, K., Khuller, S. (eds.) APPROX 2000. LNCS, vol. 1913, pp. 226–237. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-44436-X_23Google Scholar
  39. 39.
    Sim, K.A., Tan, T.S., Wong, K.B.: On the burning number of generalized petersen graphs. Bull. Malays. Math. Sci. Soc. 6, 1–14 (2017)Google Scholar
  40. 40.
    Slater, P.J., Cockayne, E.J., Hedetniemi, S.T.: Information dissemination in trees. SIAM J. Comput. 10(4), 692–701 (1981)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2001).  https://doi.org/10.1007/978-3-662-04565-7zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Ryerson UniversityTorontoCanada
  2. 2.University of ManitobaWinnipegCanada

Personalised recommendations