Advertisement

Minmax-Regret Evacuation Planning for Cycle Networks

  • Robert Benkoczi
  • Binay Bhattacharya
  • Yuya Higashikawa
  • Tsunehiko Kameda
  • Naoki Katoh
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11436)

Abstract

This paper considers the problem of evacuating people located at vertices to a “sink” in a cycle network. In the “minmax-regret” version of this problem, the exact number of evacuees at each vertex is unknown, but only an interval for a possible number is given. We show that a minmax-regret 1-sink in cycle networks with uniform edge capacities can be found in \(O(n^2)\) time, where n is the number of vertices. No correct algorithm was known before for this problem.

Notes

Acknowledgement

This work is supported in part by NSERC of Canada Discovery Grant, awarded to Robert Benkoczi and Binay Bhattacharya, in part by JST Crest (JPMJCR1402), granted to Naoki Kato and Yuya Higashikawa, and in part by JSPS Kakenhi Grant-in-Aid for Young Scientists (B) (17K12641), granted to Yuya Higashikawa.

References

  1. 1.
    Arumugam, G.P., Augustine, J., Golin, M., Srikanthan, P.: A polynomial time algorithm for minimax-regret evacuation on a dynamic path. arXiv:1404.5448 v1 [cs.DS] 22 April 2014
  2. 2.
    Benkoczi, R., Das, R.: The min-max sink location problem on dynamic cycle networks, October 2018. Submitted to a conferenceGoogle Scholar
  3. 3.
    Bhattacharya, B., Golin, M.J., Higashikawa, Y., Kameda, T., Katoh, N.: Improved algorithms for computing k-sink on dynamic flow path networks. Algorithms and Data Structures. LNCS, vol. 10389, pp. 133–144. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-62127-2_12CrossRefzbMATHGoogle Scholar
  4. 4.
    Bhattacharya, B., Kameda, T.: Improved algorithms for computing minmax regret sinks on path and tree networks. Theor. Comput. Sci. 607, 411–425 (2015)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Chen, D., Golin, M.: Sink evacuation on trees with dynamic confluent flows. In: Hong, S.-H. (ed.) Leibniz International Proceedings in Informatics, 27th International Symposium on Algorithms and Computation (ISAAC), pp. 25:1–25:13 (2016)Google Scholar
  6. 6.
    Chen, D., Golin, M.: Minmax centered \(k\)-partitioning of trees and applications to sink evacuation with dynamic confluent flows. CoRR abs/1803.09289 (2018)Google Scholar
  7. 7.
    Cheng, S.-W., Higashikawa, Y., Katoh, N., Ni, G., Su, B., Xu, Y.: Minimax regret 1-sink location problems in dynamic path networks. In: Chan, T.-H.H., Lau, L.C., Trevisan, L. (eds.) TAMC 2013. LNCS, vol. 7876, pp. 121–132. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38236-9_12CrossRefGoogle Scholar
  8. 8.
    Frederickson, G., Johnson, D.: Finding \(k\)th paths and \(p\)-centers by generating and searching good data structures. J. Algorithms 4, 61–80 (1983)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Golin, M., Sandeep, S.: Minmax-regret \(k\)-sink location on a dynamic tree network with uniform capacities. arXiv:1806.03814v1 [cs.DS], pp. 1–32, 11 June 2018
  10. 10.
    Higashikawa, Y., et al.: Minimax regret 1-sink location problem in dynamic path networks. Theor. Comput. Sci. 588(11), 24–36 (2015)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Higashikawa, Y., Golin, M.J., Katoh, N.: Minimax regret sink location problem in dynamic tree networks with uniform capacity. J. Graph Algorithms Appl. 18(4), 539–555 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Higashikawa, Y., Golin, M.J., Katoh, N.: Multiple sink location problems in dynamic path networks. Theor. Comput. Sci. 607(1), 2–15 (2015)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Kouvelis, P., Yu, G.: Robust Discrete Optimization and its Applications. Kluwer Academic Publishers, London (1997)CrossRefGoogle Scholar
  14. 14.
    Li, H., Xu, Y.: Minimax regret 1-sink location problem with accessibility in dynamic general networks. Eur. J. Oper. Res. 250, 360–366 (2016)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Mamada, S., Uno, T., Makino, K., Fujishige, S.: An \({O}(n\log ^2 n)\) algorithm for a sink location problem in dynamic tree networks. In: Levy, J.-J., Mayr, E.W., Mitchell, J.C. (eds.) TCS 2004. IIFIP, vol. 155, pp. 251–264. Springer, Boston, MA (2004).  https://doi.org/10.1007/1-4020-8141-3_21CrossRefGoogle Scholar
  16. 16.
    Mamada, S., Uno, T., Makino, K., Fujishige, S.: An \({O}(n\log ^2 n)\) algorithm for a sink location problem in dynamic tree networks. Discret. Appl. Math. 154, 2387–2401 (2006)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Megiddo, N.: Combinatorial optimization with rational objective functions. Math. Oper. Res. 4, 414–424 (1979)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Wang, H.: Minmax regret 1-facility location on uncertain path networks. Eur. J. Oper. Res. 239(3), 636–643 (2014)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Xu, Y., Li, H.: Minimax regret 1-sink location problem in dynamic cycle networks. Inf. Process. Lett. 115(2), 163–169 (2015)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Robert Benkoczi
    • 1
  • Binay Bhattacharya
    • 2
  • Yuya Higashikawa
    • 3
  • Tsunehiko Kameda
    • 2
  • Naoki Katoh
    • 4
  1. 1.Department of Mathematics and Computer ScienceUniversity of LethbridgeLethbridgeCanada
  2. 2.School of Computing ScienceSimon Fraser UniversityBurnabyCanada
  3. 3.School of Business AdministrationUniversity of HyogoKobeJapan
  4. 4.School of Science and TechnologyKwansei Gakuin UniversitySandaJapan

Personalised recommendations