The Complexity of Synthesis for 43 Boolean Petri Net Types

  • Ronny TredupEmail author
  • Christian Rosenke
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11436)


Synthesis for a type of Petri nets is the problem of finding, for a given transition system A, a Petri net N of this type having a state graph that is isomorphic to A, if such a net exists. This paper studies the computational complexity of synthesis for 43 boolean types of Petri nets. It turns out that for 36 of these types synthesis can be done in polynomial time while for the other seven it is NP-hard.


  1. 1.
    van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and Enhancement of Business Processes. Springer, Heidelberg (2011). Scholar
  2. 2.
    Badouel, E., Bernardinello, L., Darondeau, P.: Polynomial algorithms for the synthesis of bounded nets. In: Mosses, P.D., Nielsen, M., Schwartzbach, M.I. (eds.) CAAP 1995. LNCS, vol. 915, pp. 364–378. Springer, Heidelberg (1995). Scholar
  3. 3.
    Badouel, E., Bernardinello, L., Darondeau, P.: The synthesis problem for elementary net systems is NP-complete. Theor. Comput. Sci. 186(1–2), 107–134 (1997). Scholar
  4. 4.
    Badouel, E., Bernardinello, L., Darondeau, P.: Petri Net Synthesis. Texts in Theoretical Computer Science. An EATCS Series. Springer, Heidelberg (2015). Scholar
  5. 5.
    Badouel, É., Caillaud, B., Darondeau, P.: Distributing finite automata through Petri net synthesis. Formal Asp. Comput. 13(6), 447–470 (2002). Scholar
  6. 6.
    Badouel, E., Darondeau, P.: Trace nets and process automata. Acta Informatica 32(7), 647–679 (1995). Scholar
  7. 7.
    Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L., Yakovlev, A.: A region-based theory for state assignment in speed-independent circuits. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 16(8), 793–812 (1997). Scholar
  8. 8.
    Ehrenfeucht, A., Rozenberg, G.: Partial (set) 2-structures. Part I: basic notions and the representation problem. Acta Informatica 27(4), 315–342 (1990). Scholar
  9. 9.
    Goldmann, M., Russell, A.: The complexity of solving equations over finite groups. Inf. Comput. 178(1), 253–262 (2002). Scholar
  10. 10.
    Kleijn, J., Koutny, M., Pietkiewicz-Koutny, M., Rozenberg, G.: Step semantics of Boolean nets. Acta Informatica 50(1), 15–39 (2013). Scholar
  11. 11.
    Montanari, U., Rossi, F.: Contextual nets. Acta Informatica 32(6), 545–596 (1995). Scholar
  12. 12.
    Moore, C., Robson, J.M.: Hard tiling problems with simple tiles. Discret. Comput. Geom. 26(4), 573–590 (2001). Scholar
  13. 13.
    Pietkiewicz-Koutny, M.: Transition systems of elementary net systems with inhibitor arcs. In: Azéma, P., Balbo, G. (eds.) ICATPN 1997. LNCS, vol. 1248, pp. 310–327. Springer, Heidelberg (1997). Scholar
  14. 14.
    Schmitt, V.: Flip-flop nets. In: Puech, C., Reischuk, R. (eds.) STACS 1996. LNCS, vol. 1046, pp. 515–528. Springer, Heidelberg (1996). Scholar
  15. 15.
    Tarjan, R.E.: Finding optimum branchings. Networks 7(1), 25–35 (1977). Scholar
  16. 16.
    Thiagarajan, P.S.: Elementary net systems. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) Petri Nets: Central Models and Their Properties. LNCS, vol. 254, pp. 26–59. Springer, Heidelberg (1986). Scholar
  17. 17.
    Tredup, R., Rosenke, C.: Narrowing down the hardness barrier of synthesizing elementary net systems. In: Schewe, S., Zhang, L. (eds.) 29th International Conference on Concurrency Theory, CONCUR 2018. LIPIcs, Beijing, China, 4–7 September 2018, vol. 118, pp. 16:1–16:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2018).
  18. 18.
    Tredup, R., Rosenke, C.: Towards completely characterizing the complexity of Boolean nets synthesis. CoRR abs/1806.03703 (2018).
  19. 19.
    Tredup, R., Rosenke, C., Wolf, K.: Elementary net synthesis remains NP-complete even for extremely simple inputs. In: Khomenko, V., Roux, O.H. (eds.) PETRI NETS 2018. LNCS, vol. 10877, pp. 40–59. Springer, Cham (2018). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institut für Informatik, Theoretische InformatikUniversität RostockRostockGermany

Personalised recommendations