Advertisement

The Complexity of Synthesis for 43 Boolean Petri Net Types

  • Ronny TredupEmail author
  • Christian Rosenke
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11436)

Abstract

Synthesis for a type of Petri nets is the problem of finding, for a given transition system A, a Petri net N of this type having a state graph that is isomorphic to A, if such a net exists. This paper studies the computational complexity of synthesis for 43 boolean types of Petri nets. It turns out that for 36 of these types synthesis can be done in polynomial time while for the other seven it is NP-hard.

References

  1. 1.
    van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and Enhancement of Business Processes. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19345-3CrossRefzbMATHGoogle Scholar
  2. 2.
    Badouel, E., Bernardinello, L., Darondeau, P.: Polynomial algorithms for the synthesis of bounded nets. In: Mosses, P.D., Nielsen, M., Schwartzbach, M.I. (eds.) CAAP 1995. LNCS, vol. 915, pp. 364–378. Springer, Heidelberg (1995).  https://doi.org/10.1007/3-540-59293-8_207CrossRefGoogle Scholar
  3. 3.
    Badouel, E., Bernardinello, L., Darondeau, P.: The synthesis problem for elementary net systems is NP-complete. Theor. Comput. Sci. 186(1–2), 107–134 (1997).  https://doi.org/10.1016/S0304-3975(96)00219-8MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Badouel, E., Bernardinello, L., Darondeau, P.: Petri Net Synthesis. Texts in Theoretical Computer Science. An EATCS Series. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-47967-4CrossRefzbMATHGoogle Scholar
  5. 5.
    Badouel, É., Caillaud, B., Darondeau, P.: Distributing finite automata through Petri net synthesis. Formal Asp. Comput. 13(6), 447–470 (2002).  https://doi.org/10.1007/s001650200022CrossRefzbMATHGoogle Scholar
  6. 6.
    Badouel, E., Darondeau, P.: Trace nets and process automata. Acta Informatica 32(7), 647–679 (1995).  https://doi.org/10.1007/BF01186645MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L., Yakovlev, A.: A region-based theory for state assignment in speed-independent circuits. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 16(8), 793–812 (1997).  https://doi.org/10.1109/43.644602CrossRefzbMATHGoogle Scholar
  8. 8.
    Ehrenfeucht, A., Rozenberg, G.: Partial (set) 2-structures. Part I: basic notions and the representation problem. Acta Informatica 27(4), 315–342 (1990).  https://doi.org/10.1007/BF00264611MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Goldmann, M., Russell, A.: The complexity of solving equations over finite groups. Inf. Comput. 178(1), 253–262 (2002).  https://doi.org/10.1006/inco.2002.3173MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kleijn, J., Koutny, M., Pietkiewicz-Koutny, M., Rozenberg, G.: Step semantics of Boolean nets. Acta Informatica 50(1), 15–39 (2013).  https://doi.org/10.1007/s00236-012-0170-2MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Montanari, U., Rossi, F.: Contextual nets. Acta Informatica 32(6), 545–596 (1995).  https://doi.org/10.1007/BF01178907MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Moore, C., Robson, J.M.: Hard tiling problems with simple tiles. Discret. Comput. Geom. 26(4), 573–590 (2001).  https://doi.org/10.1007/s00454-001-0047-6MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Pietkiewicz-Koutny, M.: Transition systems of elementary net systems with inhibitor arcs. In: Azéma, P., Balbo, G. (eds.) ICATPN 1997. LNCS, vol. 1248, pp. 310–327. Springer, Heidelberg (1997).  https://doi.org/10.1007/3-540-63139-9_43CrossRefGoogle Scholar
  14. 14.
    Schmitt, V.: Flip-flop nets. In: Puech, C., Reischuk, R. (eds.) STACS 1996. LNCS, vol. 1046, pp. 515–528. Springer, Heidelberg (1996).  https://doi.org/10.1007/3-540-60922-9_42CrossRefGoogle Scholar
  15. 15.
    Tarjan, R.E.: Finding optimum branchings. Networks 7(1), 25–35 (1977).  https://doi.org/10.1002/net.3230070103MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Thiagarajan, P.S.: Elementary net systems. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) Petri Nets: Central Models and Their Properties. LNCS, vol. 254, pp. 26–59. Springer, Heidelberg (1986).  https://doi.org/10.1007/BFb0046835CrossRefGoogle Scholar
  17. 17.
    Tredup, R., Rosenke, C.: Narrowing down the hardness barrier of synthesizing elementary net systems. In: Schewe, S., Zhang, L. (eds.) 29th International Conference on Concurrency Theory, CONCUR 2018. LIPIcs, Beijing, China, 4–7 September 2018, vol. 118, pp. 16:1–16:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2018).  https://doi.org/10.4230/LIPIcs.CONCUR.2018.16
  18. 18.
    Tredup, R., Rosenke, C.: Towards completely characterizing the complexity of Boolean nets synthesis. CoRR abs/1806.03703 (2018). http://arxiv.org/abs/1806.03703
  19. 19.
    Tredup, R., Rosenke, C., Wolf, K.: Elementary net synthesis remains NP-complete even for extremely simple inputs. In: Khomenko, V., Roux, O.H. (eds.) PETRI NETS 2018. LNCS, vol. 10877, pp. 40–59. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-91268-4_3CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institut für Informatik, Theoretische InformatikUniversität RostockRostockGermany

Personalised recommendations