Advertisement

Generalizations of Weighted Matroid Congestion Games: Pure Nash Equilibrium, Sensitivity Analysis, and Discrete Convex Function

  • Kenjiro TakazawaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11436)

Abstract

Congestion games provide a model of human’s behavior of choosing an optimal strategy while avoiding congestion. In the past decade, matroid congestion games have been actively studied and their good properties have been revealed. In most of the previous work, the cost functions are assumed to be univariate or bivariate. In this paper, we discuss generalizations of matroid congestion games in which the cost functions are n-variate, where n is the number of players. First, we prove the existence of pure Nash equilibria in matroid congestion games with monotone cost functions, which extends that for weighted matroid congestion games by Ackermann, Röglin, and Vöcking (2009). Second, we prove the existence of pure Nash equilibria in matroid resource buying games with submodular cost functions, which extends that for matroid resource buying games with marginally nonincreasing cost functions by Harks and Peis (2014). Finally, motivated from polymatroid congestion games with \(\mathrm {M}^\natural \)-convex cost functions, we conduct sensitivity analysis for separable \(\mathrm {M}^\natural \)-convex optimization, which extends that for separable convex optimization over base polyhedra by Harks, Klimm, and Peis (2018).

Keywords

Pure Nash equilibrium Matroid congestion game Monotone set function Resource buying game Submodular function Polymatroid congestion game Sensitivity analysis \(\mathrm {M}^\natural \)-convex function 

Notes

Acknowledgements

This work is partially supported by JSPS KAKENHI Grant Numbers JP16K16012, JP26280001, JP26280004, Japan.

References

  1. 1.
    Ackermann, H., Röglin, H., Vöcking, B.: On the impact of combinatorial structure on congestion games. J. ACM 55(6), 25:1–25:22 (2008).  https://doi.org/10.1145/1455248.1455249MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ackermann, H., Röglin, H., Vöcking, B.: Pure Nash equilibria in player-specific and weighted congestion games. Theor. Comput. Sci. 410(17), 1552–1563 (2009).  https://doi.org/10.1016/j.tcs.2008.12.035MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bhaskar, U., Fleischer, L., Hoy, D., Huang, C.-C.: On the uniqueness of equilibrium in atomic splittable routing games. Math. Oper. Res. 40(3), 634–654 (2015).  https://doi.org/10.1287/moor.2014.0688MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cominetti, R., Correa, J.R., Moses, N.E.S.: The impact of oligopolistic competition in networks. Oper. Res. 57(6), 1421–1437 (2009).  https://doi.org/10.1287/opre.1080.0653MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Fujishige, S.: Submodular Functions and Optimization. Annals of Discrete Mathematics, vol. 58, 2nd edn. Elsevier, Amsterdam (2005)zbMATHGoogle Scholar
  6. 6.
    Fujishige, S., Goemans, M.X., Harks, T., Peis, B., Zenklusen, R.: Congestion games viewed from M-convexity. Oper. Res. Lett. 43(3), 329–333 (2015).  https://doi.org/10.1016/j.orl.2015.04.002MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Fujishige, S., Goemans, M.X., Harks, T., Peis, B., Zenklusen, R.: Matroids are immune to Braess’ paradox. Math. Oper. Res. 42(3), 745–761 (2017).  https://doi.org/10.1287/moor.2016.0825MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Harks, T., Klimm, M., Peis, B.: Sensitivity analysis for convex separable optimization over integeral polymatroids. SIAM J. Optim. 28, 2222–2245 (2018).  https://doi.org/10.1137/16M1107450MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Harks, T., Peis, B.: Resource buying games. Algorithmica 70(3), 493–512 (2014).  https://doi.org/10.1007/s00453-014-9876-6MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Harks, T., Peis, B.: Resource buying games. In: Schulz, A.S., Skutella, M., Stiller, S., Wagner, D. (eds.) Gems of Combinatorial Optimization and Graph Algorithms, pp. 103–111. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24971-1_10CrossRefGoogle Scholar
  11. 11.
    Harks, T., Timmermans, V.: Uniqueness of equilibria in atomic splittable polymatroid congestion games. J. Comb. Optim. 36(3), 812–830 (2018).  https://doi.org/10.1007/s10878-017-0166-5MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Huang, C.-C.: Collusion in atomic splittable routing games. Theory Comput. Syst. 52(4), 763–801 (2013).  https://doi.org/10.1007/s00224-012-9421-4MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Moriguchi, S., Shioura, A., Tsuchimura, N.: \(\rm M\)-convex function minimization by continuous relaxation approach: proximity theorem and algorithm. SIAM J. Optim. 21(3), 633–668 (2011).  https://doi.org/10.1137/080736156MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Murota, K.: Convexity and Steinitz’s exchange property. Adv. Math. 125, 272–331 (1996).  https://doi.org/10.1006/aima.1996.0084MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Murota, K.: Discrete Convex Analysis. Society for Industrial and Applied Mathematics, Philadelphia (2003)CrossRefGoogle Scholar
  16. 16.
    Murota, K.: Discrete convex analysis: a tool for economics and game theory. J. Mech. Inst. Des. 1, 151–273 (2016).  https://doi.org/10.22574/jmid.2016.12.005CrossRefGoogle Scholar
  17. 17.
    Murota, K., Shioura, A.: M-convex function on generalized polymatroid. Math. Oper. Res. 24, 95–105 (1999).  https://doi.org/10.1287/moor.24.1.95MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Murota, K., Tamura, A.: Proximity theorems of discrete convex functions. Math. Program. 99(3), 539–562 (2004).  https://doi.org/10.1007/s10107-003-0466-7MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Rosenthal, R.W.: A class of games possessing pure-strategy Nash equilibria. Int. J. Game Theory 2, 65–67 (1973).  https://doi.org/10.1007/BF01737559MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Schrijver, A.: Combinatorial Optimization - Polyhedra and Eciency. Springer, Heidelberg (2003)zbMATHGoogle Scholar
  21. 21.
    Tran-Thanh, L., Polukarov, M., Chapman, A., Rogers, A., Jennings, N.R.: On the existence of pure strategy Nash equilibria in integer–splittable weighted congestion games. In: Persiano, G. (ed.) SAGT 2011. LNCS, vol. 6982, pp. 236–253. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-24829-0_22CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Hosei UniversityTokyoJapan

Personalised recommendations