# Read-Once Certification of Linear Infeasibility in UTVPI Constraints

• K. Subramani
• Piotr Wojciechowski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11436)

## Abstract

In this paper, we discuss the design and analysis of a polynomial time algorithm for a problem associated with a linearly infeasible system of Unit Two Variable Per Inequality (UTVPI) constraints, viz., the read-once refutation (ROR) problem. Recall that a UTVPI constraint is a linear relationship of the form: $$a_{i}\cdot x_{i}+a_{j} \cdot x_{j} \le b_{ij}$$, where $$a_{i},a_{j} \in \{0,1,-1\}$$. A conjunction of such constraints is called a UTVPI constraint system (UCS) and can be represented in matrix form as: $$\mathbf{A \cdot x \le c}$$. These constraint find applications in a host of domains including but not limited to operations research and program verification. For the linear system $$\mathbf{A\cdot x \le b}$$, a refutation is a collection of m variables $$\mathbf{y}=[y_{1},y_{2},\ldots , y_{m}]^{T} \in \mathbb {R}^{m}_{+}$$, such that $$\mathbf{y\cdot A =0}$$, $$\mathbf{y \cdot b } < 0$$. Such a refutation is guaranteed to exist for any infeasible linear program, as per Farkas’ lemma. The refutation is said to be read-once, if each $$y_{i} \in \{0,1\}$$. Read-once refutations are incomplete in that their existence is not guaranteed for infeasible linear programs, in general. Indeed they are not complete, even for UCSs. Hence, the question of whether an arbitrary UCS has an ROR is both interesting and non-trivial. In this paper, we reduce this problem to the problem of computing a minimum weight perfect matching (MWPM) in an undirected graph. This results in an algorithm that runs in time polynomial in the size of the input UCS.

## References

1. 1.
Alekhnovich, M., Buss, S., Moran, S., Pitassi, T.: Minimum propositional proof length is NP-hard to linearly approximate. In: Brim, L., Gruska, J., Zlatuška, J. (eds.) MFCS 1998. LNCS, vol. 1450, pp. 176–184. Springer, Heidelberg (1998).
2. 2.
Beame, P., Pitassi, T.: Propositional proof complexity: past, present, future. Bull. EATCS 65, 66–89 (1998)
3. 3.
Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT Press, Cambridge (2001)
4. 4.
Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: POPL, pp. 238–252 (1977)Google Scholar
5. 5.
Duan, R., Pettie, S., Su, H.-H.: Scaling algorithms for weighted matching in general graphs. ACM Trans. Algorithms 14(1), 8:1–8:35 (2018)
6. 6.
Edmonds, J.: An introduction to matching. In: Mimeographed Notes. Engineering Summer Conference, University of Michigan, Ann Arbor, MI (1967)Google Scholar
7. 7.
Farkas, G.: Über die Theorie der Einfachen Ungleichungen. Journal für die Reine und Angewandte Mathematik 124(124), 1–27 (1902)
8. 8.
Gabow, H.N.: An efficient implementation of Edmonds’ algorithm for maximum matching on graphs. J. ACM 23(2), 221–234 (1976)
9. 9.
Gabow, H.N.: Data structures for weighted matching and nearest common ancestors with linking. In: Johnson, D. (ed.) Proceedings of the 1st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 1990), San Francisco, CA, USA, pp. 434–443. SIAM, January 1990Google Scholar
10. 10.
Gerber, R., Pugh, W., Saksena, M.: Parametric dispatching of hard real-time tasks. IEEE Trans. Comput. 44(3), 471–479 (1995)
11. 11.
Haken, A.: The intractability of resolution. Theor. Comput. Sci. 39(2–3), 297–308 (1985)
12. 12.
Hochbaum, D.S., (Seffi) Naor, J.: Simple and fast algorithms for linear and integer programs with two variables per inequality. SIAM J. Comput. 23(6), 1179–1192 (1994)
13. 13.
Iwama, K.: Complexity of finding short resolution proofs. In: Prívara, I., Ružička, P. (eds.) MFCS 1997. LNCS, vol. 1295, pp. 309–318. Springer, Heidelberg (1997).
14. 14.
Iwama, K., Miyano, E.: Intractability of read-once resolution. In: Proceedings of the 10th Annual Conference on Structure in Complexity Theory (SCTC 1995), Los Alamitos, CA, USA, pp. 29–36. IEEE Computer Society Press, June 1995Google Scholar
15. 15.
Büning, H.K., Wojciechowski, P.J., Subramani, K.: Finding read-once resolution refutations in systems of 2CNF clauses. Theor. Comput. Sci. 729, 42–56 (2018)
16. 16.
Büning, H.K., Zhao, X.: The complexity of read-once resolution. Ann. Math. Artif. Intell. 36(4), 419–435 (2002)
17. 17.
Korte, B., Vygen, J.: Combinatorial Optimization. Algorithms and Combinatorics, vol. 21. Springer, New York (2010).
18. 18.
Lahiri, S.K., Musuvathi, M.: An efficient decision procedure for UTVPI constraints. In: Gramlich, B. (ed.) FroCoS 2005. LNCS (LNAI), vol. 3717, pp. 168–183. Springer, Heidelberg (2005).
19. 19.
Miné, A.: The octagon abstract domain. High.-Order Symb. Comput. 19(1), 31–100 (2006)
20. 20.
Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley, New York (1999)
21. 21.
Revesz, P.Z.: Tightened transitive closure of integer addition constraints. In: Symposium on Abstraction, Reformulation, and Approximation (SARA), pp. 136–142 (2009)Google Scholar
22. 22.
Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1987)
23. 23.
SRI International. Yices: An SMT solver. http://yices.csl.sri.com/
24. 24.
Subramani, K.: Optimal length resolution refutations of difference constraint systems. J. Autom. Reason. (JAR) 43(2), 121–137 (2009)
25. 25.
Subramani, K., Williamson, M., Gu, X.: Improved algorithms for optimal length resolution refutation in difference constraint systems. Formal Aspects Comput. 25(2), 319–341 (2013)
26. 26.
Subramani, K., Wojciechowski, P.J.: A combinatorial certifying algorithm for linear feasibility in UTVPI constraints. Algorithmica 78(1), 166–208 (2017)
27. 27.
Urquhart, A.: The complexity of propositional proofs. Bull. Symb. Logic 1(4), 425–467 (1995)