Advertisement

On the Enumeration of Bicriteria Temporal Paths

  • Petra Mutzel
  • Lutz OettershagenEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11436)

Abstract

We discuss the complexity of path enumeration in weighted temporal graphs. In a weighted temporal graph, each edge has an availability time, a traversal time and some cost. We introduce two bicriteria temporal min-cost path problems in which we are interested in the set of all efficient paths with low costs and short duration or early arrival times, respectively. Unfortunately, the number of efficient paths can be exponential in the size of the input. For the case of strictly positive edge costs, however, we are able to provide algorithms that enumerate the set of efficient paths with polynomial time delay and polynomial space. If we are only interested in the set of Pareto-optimal solutions (not in the paths themselves), then we show that in the case of nonnegative edge costs these sets can be found in polynomial time. In addition, for each Pareto-optimal solution, we are able to find an efficient path in polynomial time.

References

  1. 1.
    Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs and dynamic networks. Int. J. Parallel Emergent Distrib. Syst. 27(5), 387–408 (2012)CrossRefGoogle Scholar
  2. 2.
    Ehrgott, M., Gandibleux, X.: A survey and annotated bibliography of multiobjective combinatorial optimization. OR-Spektrum 22(4), 425–460 (2000)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)zbMATHGoogle Scholar
  4. 4.
    Hamacher, H.W., Ruzika, S., Tjandra, S.A.: Algorithms for time-dependent bicriteria shortest path problems. Discrete Optim. 3(3), 238–254 (2006)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Hansen, P.: Bicriterion path problems. In: Fandel, G., Gal, T. (eds.) Multiple Criteria Decision Making Theory and Application, pp. 109–127. Springer, Berlin (1980).  https://doi.org/10.1007/978-3-642-48782-8_9CrossRefGoogle Scholar
  6. 6.
    Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519(3), 97–125 (2012)CrossRefGoogle Scholar
  7. 7.
    Johnson, D.S., Yannakakis, M., Papadimitriou, C.H.: On generating all maximal independent sets. Inf. Process. Lett. 27(3), 119–123 (1988)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Kostakos, V.: Temporal graphs. Phys. A: Stat. Mech. Appl. 388(6), 1007–1023 (2009)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Martins, E.Q.V.: On a multicriteria shortest path problem. Eur. J. Oper. Res. 16(2), 236–245 (1984)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Skriver, A., Andersen, K.: A label correcting approach for solving bicriterion shortest-path problems. Comput. Oper. Res. 27(6), 507–524 (2000)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Wu, H., Cheng, J., Huang, S., Ke, Y., Lu, Y., Xu, Y.: Path problems in temporal graphs. Proc. VLDB Endow. 7(9), 721–732 (2014)CrossRefGoogle Scholar
  12. 12.
    Xuan, B.B., Ferreira, A., Jarry, A.: Computing shortest, fastest, and foremost journeys in dynamic networks. Int. J. Found. Comput. Sci. 14(02), 267–285 (2003)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Computer ScienceTU Dortmund UniversityDortmundGermany

Personalised recommendations