Dispersion of Mobile Robots: The Power of Randomness

  • Anisur Rahaman MollaEmail author
  • William K. MosesJr.
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11436)


We consider cooperation among insects, modeled as cooperation between mobile robots on a graph. Within this setting, we consider the problem of mobile robot dispersion on graphs. The study of mobile robots on a graph is an interesting paradigm with many interesting problems and applications. The problem of dispersion in this context, introduced by Augustine and Moses Jr. [4], asks that n robots, initially placed arbitrarily on an n node graph, work together to quickly reach a configuration with exactly one robot at each node. Previous work on this problem has looked at the trade-off between the time to achieve dispersion and the amount of memory required by each robot. However, the trade-off was analyzed for deterministic algorithms and the minimum memory required to achieve dispersion was found to be \(\varOmega (\log n)\) bits at each robot. In this paper, we show that by harnessing the power of randomness, one can achieve dispersion with \(O(\log \varDelta )\) bits of memory at each robot, where \(\varDelta \) is the maximum degree of the graph. Further, we show a matching lower bound of \(\varOmega (\log \varDelta )\) bits for any randomized algorithm to solve dispersion. We further extend the problem to a general k-dispersion problem where \(k> n\) robots need to disperse over n nodes such that at most \(\lceil k/n \rceil \) robots are at each node in the final configuration.


Nature-inspired computing Mobile robots Dispersion Collective robot exploration Scattering Uniform deployment Load balancing Distributed algorithms Randomized algorithms 


  1. 1.
    Aldous, D.J.: Lower bounds for covering times for reversible Markov chains and random walks on graphs. J. Theor. Probab. 2(1), 91–100 (1989)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Aleliunas, R., Karp, R.M., Lipton, R.J., Lovász, L., Rackoff, C.: Random walks, universal traversal sequences, and the complexity of maze problems. In: Proceedings of the 20th Annual Symposium on Foundations of Computer Science (FOCS), pp. 218–223 (1979)Google Scholar
  3. 3.
    Ambühl, C., Gąsieniec, L., Pelc, A., Radzik, T., Zhang, X.: Tree exploration with logarithmic memory. ACM Trans. Algorithms (TALG) 7(2), 17 (2011)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Augustine, J., Moses Jr., W.K.: Dispersion of mobile robots: a study of memory-time trade-offs. In: Proceedings of the 19th International Conference on Distributed Computing and Networking, ICDCN 2018, Varanasi, India, 4–7 January 2018, pp. 1:1–1:10. ACM (2018)Google Scholar
  5. 5.
    Augustine, J., Moses Jr., W.K.: Dispersion of mobile robots: a study of memory-time trade-offs. CoRR abs/1707.05629 (v4) (2018).
  6. 6.
    Baldoni, R., Bonnet, F., Milani, A., Raynal, M.: On the solvability of anonymous partial grids exploration by mobile robots. In: Baker, T.P., Bui, A., Tixeuil, S. (eds.) OPODIS 2008. LNCS, vol. 5401, pp. 428–445. Springer, Heidelberg (2008). Scholar
  7. 7.
    Barriere, L., Flocchini, P., Mesa-Barrameda, E., Santoro, N.: Uniform scattering of autonomous mobile robots in a grid. Int. J. Found. Comput. Sci. 22(03), 679–697 (2011)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Bodlaender, H.L., van Leeuwen, J.: Distribution of Records on a Ring of Processors. Department of Computer Science, University of Utrecht (1986)Google Scholar
  9. 9.
    Brass, P., Cabrera-Mora, F., Gasparri, A., Xiao, J.: Multirobot tree and graph exploration. IEEE Trans. Rob. 27(4), 707–717 (2011)Google Scholar
  10. 10.
    Brass, P., Vigan, I., Xu, N.: Improved analysis of a multirobot graph exploration strategy. In: 2014 13th International Conference on Control Automation Robotics & Vision (ICARCV), pp. 1906–1910. IEEE (2014)Google Scholar
  11. 11.
    Broder, A.Z., Karlin, A.R.: Bounds on the cover time. J. Theor. Probab. 2(1), 101–120 (1989)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Cohen, R., Fraigniaud, P., Ilcinkas, D., Korman, A., Peleg, D.: Label-guided graph exploration by a finite automaton. ACM Trans. Algorithms (TALG) 4(4), 42 (2008)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Cybenko, G.: Dynamic load balancing for distributed memory multiprocessors. J. Parallel Distrib. Comput. 7(2), 279–301 (1989)Google Scholar
  14. 14.
    Datta, A.K., Lamani, A., Larmore, L.L., Petit, F.: Enabling ring exploration with myopic oblivious robots. In: Parallel and Distributed Processing Symposium Workshop (IPDPSW), pp. 490–499. IEEE (2015)Google Scholar
  15. 15.
    Dereniowski, D., Disser, Y., Kosowski, A., Pająk, D., Uznański, P.: Fast collaborative graph exploration. Inf. Comput. 243, 37–49 (2015)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Devismes, S., Lamani, A., Petit, F., Raymond, P., Tixeuil, S.: Optimal grid exploration by asynchronous oblivious robots. In: Richa, A.W., Scheideler, C. (eds.) SSS 2012. LNCS, vol. 7596, pp. 64–76. Springer, Heidelberg (2012). Scholar
  17. 17.
    Diks, K., Fraigniaud, P., Kranakis, E., Pelc, A.: Tree exploration with little memory. In: Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 588–597. Society for Industrial and Applied Mathematics (2002)Google Scholar
  18. 18.
    Dynia, M., Kutyłowski, J., auf der Heide, F.M., Schindelhauer, C.: Smart robot teams exploring sparse trees. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 327–338. Springer, Heidelberg (2006). Scholar
  19. 19.
    Elor, Y., Bruckstein, A.M.: Uniform multi-agent deployment on a ring. Theor. Comput. Sci. 412(8–10), 783–795 (2011)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Fraigniaud, P., Ilcinkas, D., Peer, G., Pelc, A., Peleg, D.: Graph exploration by a finite automaton. Theor. Comput. Sci. 345(2–3), 331–344 (2005)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Kshemkalyani, A.D., Ali, F.: Efficient dispersion of mobile robots on graphs. arXiv preprint arXiv:1805.12242 (2018)
  22. 22.
    Lamani, A., Potop-Butucaru, M.G., Tixeuil, S.: Optimal deterministic ring exploration with oblivious asynchronous robots. In: Patt-Shamir, B., Ekim, T. (eds.) SIROCCO 2010. LNCS, vol. 6058, pp. 183–196. Springer, Heidelberg (2010). Scholar
  23. 23.
    Lovász, L.: Random walks on graphs: a survey. In: Combinatorics, Paul Erdős is Eighty, vol. 2, pp. 1–46 (1993)Google Scholar
  24. 24.
    Muthukrishnan, S., Ghosh, B., Schultz, M.H.: First-and second-order diffusive methods for rapid, coarse, distributed load balancing. Theor. Comput. Syst. 31(4), 331–354 (1998)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Ortolf, C., Schindelhauer, C.: A recursive approach to multi-robot exploration of trees. In: Halldórsson, M.M. (ed.) SIROCCO 2014. LNCS, vol. 8576, pp. 343–354. Springer, Cham (2014). Scholar
  26. 26.
    Peleg, D., Van Gelder, A.: Packet distribution on a ring. J. Parallel Distrib. Comput. 6(3), 558–567 (1989)Google Scholar
  27. 27.
    Reingold, O.: Undirected connectivity in log-space. J. ACM 55(4), 17:1–17:24 (2008)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Shibata, M., Mega, T., Ooshita, F., Kakugawa, H., Masuzawa, T.: Uniform deployment of mobile agents in asynchronous rings. In: Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing, pp. 415–424. ACM (2016)Google Scholar
  29. 29.
    Subramanian, R., Scherson, I.D.: An analysis of diffusive load-balancing. In: Proceedings of the Sixth Annual ACM Symposium on Parallel Algorithms and Architectures, pp. 220–225. ACM (1994)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Cryptology and Security Research UnitIndian Statistical InstituteKolkataIndia
  2. 2.Faculty of Industrial Engineering and ManagementTechnion - Israel Institute of TechnologyHaifaIsrael

Personalised recommendations