Advertisement

Computable Isomorphisms of Distributive Lattices

  • Nikolay BazhenovEmail author
  • Manat Mustafa
  • Mars Yamaleev
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11436)

Abstract

A standard tool for the classifying computability-theoretic complexity of equivalence relations is provided by computable reducibility. This gives rise to a rich degree-structure which has been extensively studied in the literature. In this paper, we show that equivalence relations, which are complete for computable reducibility in various levels of the hyperarithmetical hierarchy, arise in a natural way in computable structure theory. We prove that for any computable successor ordinal \(\alpha \), the relation of \(\varDelta ^0_{\alpha }\) isomorphism for computable distributive lattices is \(\varSigma ^0_{\alpha +2}\) complete. We obtain similar results for Heyting algebras, undirected graphs, and uniformly discrete metric spaces.

Keywords

Distributive lattice Computable reducibility Equivalence relation Computable categoricity Heyting algebra Computable metric space 

Notes

Acknowledgments

Part of the research contained in this paper was carried out while the first and the last authors were visiting the Department of Mathematics of Nazarbayev University, Astana. The authors wish to thank Nazarbayev University for its hospitality.

References

  1. 1.
    Andrews, U., Sorbi, A.: Joins and meets in the structure of ceers. Computability, Published online.  https://doi.org/10.3233/COM-180098
  2. 2.
    Andrews, U., Badaev, S., Sorbi, A.: A survey on universal computably enumerable equivalence relations. In: Day, A., Fellows, M., Greenberg, N., Khoussainov, B., Melnikov, A., Rosamond, F. (eds.) Computability and Complexity. LNCS, vol. 10010, pp. 418–451. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-50062-1_25CrossRefGoogle Scholar
  3. 3.
    Andrews, U., Lempp, S., Miller, J.S., Ng, K.M., San Mauro, L., Sorbi, A.: Universal computably enumerable equivalence relations. J. Symb. Logic 79(1), 60–88 (2014).  https://doi.org/10.1017/jsl.2013.8MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ash, C.J.: Recursive labelling systems and stability of recursive structures in hyperarithmetical degrees. Trans. Am. Math. Soc. 298(2), 497–514 (1986).  https://doi.org/10.1090/S0002-9947-1986-0860377-7MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Ash, C.J., Knight, J.F.: Pairs of recursive structures. Ann. Pure Appl. Log. 46(3), 211–234 (1990).  https://doi.org/10.1016/0168-0072(90)90004-LMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ash, C.J., Knight, J.F.: Computable Structures and the Hyperarithmetical Hierarchy. Studies in Logic and the Foundations of Mathematics, vol. 144. Elsevier Science B.V., Amsterdam (2000)zbMATHGoogle Scholar
  7. 7.
    Bazhenov, N., Marchuk, M.: Degrees of categoricity for prime and homogeneous models. In: Manea, F., Miller, R.G., Nowotka, D. (eds.) CiE 2018. LNCS, vol. 10936, pp. 40–49. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-94418-0_4CrossRefzbMATHGoogle Scholar
  8. 8.
    Bazhenov, N., Mustafa, M., San Mauro, L., Sorbi, A., Yamaleev, M.: Classifying equivalence relations in the Ershov hierarchy. arXiv:1810.03559
  9. 9.
    Bazhenov, N.A.: Effective categoricity for distributive lattices and Heyting algebras. Lobachevskii J. Math. 38(4), 600–614 (2017).  https://doi.org/10.1134/S1995080217040035MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bernardi, C.: On the relation provable equivalence and on partitions in effectively inseparable sets. Stud. Log. 40(1), 29–37 (1981).  https://doi.org/10.1007/BF01837553MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Bernardi, C., Sorbi, A.: Classifying positive equivalence relations. J. Symb. Logic 48(3), 529–538 (1983).  https://doi.org/10.2307/2273443MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Ershov, Y.L.: Positive equivalences. Algebra Log. 10(6), 378–394 (1971).  https://doi.org/10.1007/BF02218645MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Ershov, Y.L.: Theory of Numberings. Nauka, Moscow (1977). (in Russian)zbMATHGoogle Scholar
  14. 14.
    Fokina, E., Friedman, S., Nies, A.: Equivalence relations that are \(\varSigma ^0_3\) complete for computable reducibility. In: Ong, L., de Queiroz, R. (eds.) WoLLIC 2012. LNCS, vol. 7456, pp. 26–33. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32621-9_2CrossRefGoogle Scholar
  15. 15.
    Fokina, E.B., Friedman, S., Harizanov, V., Knight, J.F., McCoy, C., Montalbán, A.: Isomorphism relations on computable structures. J. Symb. Logic 77(1), 122–132 (2012).  https://doi.org/10.2178/jsl/1327068695MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Fokina, E.B., Harizanov, V., Melnikov, A.: Computable model theory. In: Downey, R. (ed.) Turing’s Legacy: Developments from Turing’s Ideas in Logic. Lecture Notes in Logic, vol. 42, pp. 124–194. Cambridge University Press, Cambridge (2014)CrossRefGoogle Scholar
  17. 17.
    Gao, S., Gerdes, P.: Computably enumerable equivalence relations. Stud. Log. 67(1), 27–59 (2001).  https://doi.org/10.1023/A:1010521410739MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Goncharov, S.S.: Countable Boolean Algebras and Decidability. Siberian School of Algebra and Logic. Consultants Bureau, New York (1997)zbMATHGoogle Scholar
  19. 19.
    Goncharov, S.S., Knight, J.F.: Computable structure and non-structure theorems. Algebra Log. 41(6), 351–373 (2002).  https://doi.org/10.1023/A:1021758312697CrossRefzbMATHGoogle Scholar
  20. 20.
    Grätzer, G.: Lattice Theory: Foundation. Birkhäuser/Springer, Basel (2011).  https://doi.org/10.1007/978-3-0348-0018-1CrossRefzbMATHGoogle Scholar
  21. 21.
    Ianovski, E., Miller, R., Ng, K.M., Nies, A.: Complexity of equivalence relations and preorders from computability theory. J. Symb. Logic 79(3), 859–881 (2014).  https://doi.org/10.1017/jsl.2013.33MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Melnikov, A.G., Nies, A.: The classification problem for compact computable metric spaces. In: Bonizzoni, P., Brattka, V., Löwe, B. (eds.) CiE 2013. LNCS, vol. 7921, pp. 320–328. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39053-1_37CrossRefzbMATHGoogle Scholar
  23. 23.
    Myhill, J.: Creative sets. Z. Math. Logik Grundlagen Math. 1, 97–108 (1955).  https://doi.org/10.1002/malq.19550010205MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Ng, K.M., Yu, H.: On the degree structure of equivalence relations under computable reducibility. Notre Dame J. Formal Log. (to appear)Google Scholar
  25. 25.
    Nies, A., Solecki, S.: Local compactness for computable polish metric spaces is \(\varPi ^1_1\)-complete. In: Beckmann, A., Mitrana, V., Soskova, M. (eds.) CiE 2015. LNCS, vol. 9136, pp. 286–290. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-20028-6_29CrossRefGoogle Scholar
  26. 26.
    Soare, R.I.: Recursively Enumerable Sets and Degrees. Springer, Berlin (1987)CrossRefGoogle Scholar
  27. 27.
    Turlington, A.: Computability of Heyting algebras and distributive lattices. Ph.D. thesis, University of Connecticut (2010)Google Scholar
  28. 28.
    Visser, A.: Numerations, \(\lambda \)-calculus and arithmetic. In: Seldin, J.P., Hindley, J.R. (eds.) To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pp. 259–284. Academic Press, London (1980)Google Scholar
  29. 29.
    Weihrauch, K.: Computable Analysis. Texts in Theoretical Computer Science. An EATCS Series. Springer, Berlin (2000).  https://doi.org/10.1007/978-3-642-56999-9CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Sobolev Institute of MathematicsNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Department of Mathematics, School of Science and TechnologyNazarbayev UniversityAstanaKazakhstan
  4. 4.Kazan Federal UniversityKazanRussia

Personalised recommendations