Advertisement

Continuous Team Semantics

  • Åsa Hirvonen
  • Juha Kontinen
  • Arno PaulyEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11436)

Abstract

We study logics with team semantics in computable metric spaces. We show how to define approximate versions of the usual independence/dependence atoms. For restricted classes of formulae, we show that we can assume w.l.o.g. that teams are closed sets. This then allows us to import techniques from computable analysis to study the complexity of formula satisfaction and model checking.

Keywords

Team semantics Continuous logic Computable analysis Independence Logic Dependence logic 

References

  1. 1.
    Abramsky, S., Kontinen, J., Väänänen, J., Vollmer, H. (eds.): Dependence Logic: Theory and Applications. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-31803-5CrossRefGoogle Scholar
  2. 2.
    Yaacov, I.B., Berenstein, A., Henson, C.W., Usvyatsov, A.: Model theory for metric structures. In: Chatzidakis, Z., Macpherson, D., Pillay, A., Wilkie, A. (eds.) Model Theory with Applications to Algebra and Analysis, Vol. II. London Math Society Lecture Note Series, vol. 350, pp. 315–427. Cambridge University Press, Cambridge (2008)CrossRefGoogle Scholar
  3. 3.
    Brattka, V., Hertling, P., Weihrauch, K.: A tutorial on computable analysis. In: Cooper, B., Löwe, B., Sorbi, A. (eds.) New Computational Paradigms: Changing Conceptions of What is Computable, pp. 425–491. Springer, New York (2008).  https://doi.org/10.1007/978-0-387-68546-5_18CrossRefzbMATHGoogle Scholar
  4. 4.
    Crosilla, L., Schuster, P. (eds.): From Sets and Types to Topology and Analysis: Towards Practicable Foundations for Constructive Mathematics. Oxford Logic Guides, vol. 48. Clarendon, Oxford (2005)zbMATHGoogle Scholar
  5. 5.
    Diener, H.: Constructive reverse mathematics. arXiv:1804.05495 (2018)
  6. 6.
    Durand, A., Hannula, M., Kontinen, J., Meier, A., Virtema, J.: Approximation and dependence via multiteam semantics. Ann. Math. Artif. Intell. 83(3–4), 297–320 (2018).  https://doi.org/10.1007/s10472-017-9568-4MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Durand, A., Kontinen, J., Vollmer, H.: Expressivity and complexity of dependence logic. In: Abramsky, S., Kontinen, J., Väänänen, J., Vollmer, H. (eds.) Dependence Logic: Theory and Applications, pp. 5–32. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-31803-5_2CrossRefGoogle Scholar
  8. 8.
    Galliani, P.: Inclusion and exclusion in team semantics: on some logics of imperfect information. Ann. Pure Appl. Logic 163(1), 68–84 (2012)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Grädel, E., Väänänen, J.: Dependence and independence. Stud. Log. 101(2), 399–410 (2013)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Hannula, M., Kontinen, J.: A finite axiomatization of conditional independence and inclusion dependencies. Inf. Comput. 249, 121–137 (2016).  https://doi.org/10.1016/j.ic.2016.04.001MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Hodges, W.: Compositional semantics for a language of imperfect information. Logic J. IGPL 5, 539–563 (1997)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Hyttinen, T., Paolini, G., Väänänen, J.: Quantum team logic and Bell’s inequalities. Rev. Symb. Logic 8(4), 722–742 (2015).  https://doi.org/10.1017/S1755020315000192MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hyttinen, T., Paolini, G., Väänänen, J.: A logic for arguing about probabilities in measure teams. Arch. Math. Log. 56(5–6), 475–489 (2017).  https://doi.org/10.1007/s00153-017-0535-xMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Ishihara, H.: Constructive reverse mathematics: compactness properties. In: [4], pp. 245–267 (2005)Google Scholar
  15. 15.
    Koudas, N., Saha, A., Srivastava, D., Venkatasubramanian, S.: Metric functional dependencies. In: Proceedings of the 2009 IEEE International Conference on Data Engineering, pp. 1275–1278. ICDE 2009. IEEE Computer Society (2009).  https://doi.org/10.1109/ICDE.2009.219
  16. 16.
    Paolini, G., Väänänen, J.: Dependence logic in pregeometries and \(\omega \)-stable theories. J. Symb. Logic 81(1), 32–55 (2016).  https://doi.org/10.1017/jsl.2015.16MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Park, C., Park, J., Park, S., Seon, D., Ziegler, M.: Computable operations on compact subsets of metric spaces with applications to Fréchet distance and shape optimization. arXiv 1701.08402 (2017). http://arxiv.org/abs/1701.08402
  18. 18.
    Pauly, A.: On the topological aspects of the theory of represented spaces. Computability 5(2), 159–180 (2016).  https://doi.org/10.3233/COM-150049, http://arxiv.org/abs/1204.3763MathSciNetCrossRefGoogle Scholar
  19. 19.
    Pauly, A., Fouché, W.: How constructive is constructing measures? J. Logic Anal. 9 (2017). http://logicandanalysis.org/index.php/jla/issue/view/16
  20. 20.
    Rettinger, R., Weihrauch, K.: Products of effective topological spaces and a uniformly computable Tychonoff Theorem. Log. Methods Comput. Sci. 9(4) (2013).  https://doi.org/10.2168/LMCS-9(4:14)2013
  21. 21.
    Simpson, S.: Subsystems of Second Order Arithmetic. Perspectives in Logic. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
  22. 22.
    Väänänen, J.: Dependence Logic: A New Approach to Independence Friendly Logic. Cambridge University Press, Cambridge (2007)CrossRefGoogle Scholar
  23. 23.
    Väänänen, J.: The logic of approximate dependence. In: Başkent, C., Moss, L.S., Ramanujam, R. (eds.) Rohit Parikh on Logic, Language and Society. OCL, vol. 11, pp. 227–234. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-47843-2_12CrossRefGoogle Scholar
  24. 24.
    Weihrauch, K.: Computable Analysis. Springer, Heidelberg (2000).  https://doi.org/10.1007/978-3-642-56999-9CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsUniversity of HelsinkiHelsinkiFinland
  2. 2.Department of Computer ScienceSwansea UniversitySwanseaUK

Personalised recommendations