Advertisement

Compact I/O-Efficient Representation of Separable Graphs and Optimal Tree Layouts

  • Tomáš Gavenčiak
  • Jakub TětekEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11436)

Abstract

Compact and I/O-efficient data representations play an important role in efficient algorithm design, as memory bandwidth and latency can present a significant performance bottleneck, slowing the computation by orders of magnitude. While this problem is very well explored in e.g. uniform numerical data processing, structural data applications (e.g. on huge graphs) require different algorithm-dependent approaches. Separable graph classes (i.e. graph classes with balanced separators of size \(\mathcal {O}(n^c)\) with \(c<1\)) include planar graphs, bounded genus graphs, and minor-free graphs.

In this article we present two generalizations of the separator theorem, to partitions with small regions only on average and to weighted graphs. Then we propose I/O-efficient succinct representation and memory layout for random walks in (weighted) separable graphs in the pointer machine model, including an efficient algorithm to compute them. Finally, we present a worst-case I/O-optimal tree layout algorithm for root-leaf path traversal, show an additive (+1)-approximation of optimal compact layout and contrast this with NP-completeness proof of finding an optimal compact layout.

References

  1. 1.
    Agarwal, P.K., Arge, L., Murali, T., Varadarajan, K.R., Vitter, J.S.: I/O-efficient algorithms for contour-line extraction and planar graph blocking. In: SODA, pp. 117–126 (1998)Google Scholar
  2. 2.
    Aggarwal, A., Chandra, A.K., Snir, M.: Hierarchical memory with block transfer. In: Foundations of Computer Science, pp. 204–216. IEEE (1987)Google Scholar
  3. 3.
    Aggarwal, A., Vitter, J.S.: The input/output complexity of sorting and related problems. Commun. ACM 31(9), 1116–1127 (1988).  https://doi.org/10.1145/48529.48535MathSciNetGoogle Scholar
  4. 4.
    Blandford, D.K., Blelloch, G.E., Kash, I.A.: Compact representations of separable graphs. In: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 679–688. SIAM (2003)Google Scholar
  5. 5.
    Blelloch, G.E., Farzan, A.: Succinct representations of separable graphs. In: Amir, A., Parida, L. (eds.) CPM 2010. LNCS, vol. 6129, pp. 138–150. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13509-5_13Google Scholar
  6. 6.
    Bollobas, B.: Modern Graph Theory. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-1-4612-0619-4zbMATHGoogle Scholar
  7. 7.
    Bringmann, K., Keusch, R., Lengler, J.: Sampling geometric inhomogeneous random graphs in linear time. In: 25th Annual European Symposium on Algorithms, ESA 2017, 4–6 September 2017, Vienna, Austria, pp. 20:1–20:15 (2017)Google Scholar
  8. 8.
    Demaine, E.: Cache-oblivious algorithms and data structures. Lect. Notes EEF Summer Sch. Massive Data Sets 8, 1–249 (2002)Google Scholar
  9. 9.
    Demaine, E.D., Iacono, J., Langerman, S.: Worst-case optimal tree layout in external memory. Algorithmica 72(2), 369–378 (2015)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Dillabaugh, C., He, M., Maheshwari, A.: Succinct and I/O efficient data structures for traversal in trees. Algorithmica 63(1), 201–223 (2012).  https://doi.org/10.1007/s00453-011-9528-zMathSciNetzbMATHGoogle Scholar
  11. 11.
    Dillabaugh, C., He, M., Maheshwari, A., Zeh, N.: I/O-efficient path traversal in succinct planar graphs. Algorithmica 77(3), 714–755 (2017)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Farzan, A., Munro, J.I.: Succinct encoding of arbitrary graphs. Theor. Comput. Sci. 513, 38–52 (2013). http://www.sciencedirect.com/science/article/pii/S0304397513007238MathSciNetzbMATHGoogle Scholar
  13. 13.
    Frigo, M., Leiserson, C.E., Prokop, H., Ramachandran, S.: Cache-oblivious algorithms. In: Proceedings of the 40th Annual Symposium on Foundations of Computer Science, FOCS 1999, p. 285. IEEE Computer Society, Washington, DC (1999). http://dl.acm.org/citation.cfm?id=795665.796479
  14. 14.
    Gamerman, D., Lopes, H.F.: Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference. Chapman and Hall/CRC, Boca Raton (2006)zbMATHGoogle Scholar
  15. 15.
    Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)zbMATHGoogle Scholar
  16. 16.
    Gil, J., Itai, A.: How to pack trees. J. Algorithms 32(2), 108–132 (1999)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Gilbert, J.R., Hutchinson, J.P., Tarjan, R.E.: A separator theorem for graphs of bounded genus. J. Algorithms 5(3), 391–407 (1984)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Goodrich, M.: Planar separators and parallel polygon triangulation. J. Comput. Syst. Sci. 51(3), 374–389 (1995)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Grinstead, C.M., Snell, J.L.: Introduction to Probability. American Mathematical Society, Providence (2006)zbMATHGoogle Scholar
  20. 20.
    Jampala, H., Zeh, N.: Cache-oblivious planar shortest paths. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 563–575. Springer, Heidelberg (2005).  https://doi.org/10.1007/11523468_46Google Scholar
  21. 21.
    Kannan, S., Naor, M., Rudich, S.: Implicit representation of graphs. SIAM J. Discrete Math. 5(4), 596–603 (1992)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Kawarabayashi, K.I., Reed, B.: A separator theorem in minor-closed classes. In: 2010 IEEE 51st Annual Symposium on Foundations of Computer Science, pp. 153–162, October 2010Google Scholar
  23. 23.
    Klein, P., Mozes, S.: Optimization algorithms for planar graphs (no date). http://planarity.org/
  24. 24.
    Kowarschik, M., Weiß, C.: An overview of cache optimization techniques and cache-aware numerical algorithms. In: Meyer, U., Sanders, P., Sibeyn, J. (eds.) Algorithms for Memory Hierarchies. LNCS, vol. 2625, pp. 213–232. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-36574-5_10zbMATHGoogle Scholar
  25. 25.
    Lanctot, M., Waugh, K., Zinkevich, M., Bowling, M.: Monte Carlo sampling for regret minimization in extensive games. In: Advances in Neural Information Processing Systems, pp. 1078–1086 (2009)Google Scholar
  26. 26.
    Leighton, T., Rao, S.: An approximate max-flow min-cut theorem for uniform multicommodity flow problems with applications to approximation algorithms. In: 29th Annual Symposium on Foundations of Computer Science, pp. 422–431, October 1988Google Scholar
  27. 27.
    Levin, D.A., Peres, Y.: Markov Chains and Mixing Times, 2nd edn. American Mathematical Society, Providence, Rhode Island (2017)Google Scholar
  28. 28.
    Lipton, R.J., Rose, D.J., Tarjan, R.E.: Generalized nested dissection. SIAM J. Numer. Anal. 16(2), 346–358 (1979). http://www.jstor.org/stable/2156840
  29. 29.
    Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM J. Appl. Math. 36(2), 177–189 (1979)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Maheshwari, A., Zeh, N.: I/O-optimal algorithms for planar graphs using separators. In: Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 372–381. Society for Industrial and Applied Mathematics (2002)Google Scholar
  31. 31.
    Miller, G.L., Teng, S.H., Thurston, W., Vavasis, S.A.: Geometric separators for finite-element meshes. SIAM J. Sci. Comput. 19(2), 364–386 (1998)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Naor, M.: Succinct representation of general unlabeled graphs. Discrete Appl. Math. 28(3), 303–307 (1990)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Schild, A., Sommer, C.: On balanced separators in road networks. In: Bampis, E. (ed.) Experimental Algorithms, pp. 286–297. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-20086-6_22Google Scholar
  34. 34.
    Turán, G.: On the succinct representation of graphs. Discrete Appl. Math. 8(3), 289–294 (1984)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Wang, J., Zheng, K., Jeung, H., Wang, H., Zheng, B., Zhou, X.: Cost-efficient spatial network partitioning for distance-based query processing. In: 2014 IEEE 15th International Conference on Mobile Data Management, vol. 1, pp. 13–22, July 2014Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Applied MathematicsCharles UniversityPragueCzech Republic

Personalised recommendations