Advertisement

Algorithms for Closest and Farthest String Problems via Rank Distance

  • Liviu P. Dinu
  • Bogdan C. Dumitru
  • Alexandru PopaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11436)

Abstract

A new distance between strings, termed rank distance, was introduced by Dinu (Fundamenta Informaticae, 2003). Since then, the properties of rank distance were studied in several papers. In this article, we continue the study of rank distance. More precisely we tackle three problems that concern the distance between strings.

  1. 1.

    The first problem that we study is String with Fixed Rank Distance (SFRD): given a set of strings S and an integer d decide if there exists a string that is at distance d from every string in S. For this problem we provide a polynomial time exact algorithm.

     
  2. 2.

    The second problem that we study is named is the Closest String Problem under Rank Distance (CSRD). The input consists of a set of strings S, asks to find the minimum integer d and a string that is at distance at most d from all strings in S. Since this problem is NP-hard (Dinu and Popa, CPM 2012) it is likely that no polynomial time algorithm exists. Thus, we propose three different approaches: a heuristic approach and two integer linear programming formulations, one of them using geometric interpretation of the problem.

     
  3. 3.

    Finally, we approach the Farthest String Problem via Rank Distance (FSRD) that asks to find two strings with the same frequency of characters (i.e. the same Parikh vector) that have the largest possible rank distance. We provide a polynomial time exact algorithm for this problem.

     

References

  1. 1.
    Arbib, C., Felici, G., Servilio, M., Ventura, P.: Optimum solution of the closest string problem via rank distance. In: Cerulli, R., Fujishige, S., Mahjoub, A.R. (eds.) ISCO 2016. LNCS, vol. 9849, pp. 297–307. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-45587-7_26Google Scholar
  2. 2.
    Babaie, M., Mousavi, S.R.: A memetic algorithm for closest string problem and farthest string problem. In: 2010 18th Iranian Conference on Electrical Engineering. IEEE, May 2010Google Scholar
  3. 3.
    Bādoiu, M., Har-Peled, S., Indyk, P.: Approximate clustering via core-sets. In: Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory of Computing, STOC 2002, pp. 250–257. ACM, New York (2002)Google Scholar
  4. 4.
    Ben-Dor, A., Lancia, G., Ravi, R., Perone, J.: Banishing bias from consensus sequences. In: Apostolico, A., Hein, J. (eds.) CPM 1997. LNCS, vol. 1264, pp. 247–261. Springer, Heidelberg (1997).  https://doi.org/10.1007/3-540-63220-4_63Google Scholar
  5. 5.
    de la Higuera, C., Casacuberta, F.: Topology of strings: median string is NP-complete. Theor. Comput. Sci. 230(1–2), 39–48 (2000)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Deng, X., Li, G., Li, Z., Ma, B., Wang, L.: Genetic design of drugs without side-effects. SIAM J. Comput. 32(4), 1073–1090 (2003)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Deza, E., Deza, M.: Dictionary of Distances. North-Holland, Amsterdam (2006)zbMATHGoogle Scholar
  8. 8.
    Dinu, A., Dinu, L.P.: On the syllabic similarities of romance languages. In: Gelbukh, A. (ed.) CICLing 2005. LNCS, vol. 3406, pp. 785–788. Springer, Heidelberg (2005).  https://doi.org/10.1007/978-3-540-30586-6_88Google Scholar
  9. 9.
    Dinu, L.P.: On the classification and aggregation of hierarchies with different constitutive elements. Fundam. Inform. 55(1), 39–50 (2003)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Dinu, L.P., Ionescu, R., Tomescu, A.: A rank-based sequence aligner with applications in phylogenetic analysis. PLoS ONE 9(8), e104006 (2014)Google Scholar
  11. 11.
    Dinu, L.P., Manea, F.: An efficient approach for the rank aggregation problem. Theor. Comput. Sci. 359(1–3), 455–461 (2006)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Dinu, L.P., Popa, A.: On the closest string via rank distance. In: Kärkkäinen, J., Stoye, J. (eds.) CPM 2012. LNCS, vol. 7354, pp. 413–426. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-31265-6_33Google Scholar
  13. 13.
    Dinu, L.P., Sgarro, A.: A low-complexity distance for DNA strings. Fundam. Inform. 73(3), 361–372 (2006)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Frances, M., Litman, A.: On covering problems of codes. Theory Comput. Syst. 30(2), 113–119 (1997)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Gagolewski, M.: Data Fusion: Theory, Methods, and Applications. Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland (2015)Google Scholar
  16. 16.
    Gramm, J., Huffner, F., Niedermeier, R.: Closest strings, primer design, and motif search. In: Currents in Computational Molecular Biology. RECOMB, pp. 74–75 (2002)Google Scholar
  17. 17.
    Greenhill, S.J.: Levenshtein distances fail to identify language relationships accurately. Comput. Linguist. 37(4), 689–698 (2011)Google Scholar
  18. 18.
    Ionescu, R.T., Popescu, M.: Knowledge Transfer between Computer Vision and Text Mining - Similarity-Based Learning Approaches. Advances in Computer Vision and Pattern Recognition. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-30367-3Google Scholar
  19. 19.
    Ionescu, R.T., Popescu, M., Cahill, A.: String kernels for native language identification: insights from behind the curtains. Comput. Linguist. 42(3), 491–525 (2016)MathSciNetGoogle Scholar
  20. 20.
    Kannan, R.: Minkowski’s convex body theorem and integer programming. Math. Oper. Res. 12(3), 415–440 (1987)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Koonin, E.V.: The emerging paradigm and open problems in comparative genomics. Bioinformatics 15(4), 265–266 (1999)Google Scholar
  22. 22.
    Lanctot, J.K., Li, M., Ma, B., Wang, S., Zhang, L.: Distinguishing string selection problems. Inf. Comput. 185(1), 41–55 (2003)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Lenstra, H.W.: Integer programming with a fixed number of variables. Math. Oper. Res. 8(4), 538–548 (1983)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Li, M., Ma, B., Wang, L.: Finding similar regions in many sequences. J. Comput. Syst. Sci. 65(1), 73–96 (2002)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Liu, X., He, H., Sýkora, O.: Parallel genetic algorithm and parallel simulated annealing algorithm for the closest string problem. In: Li, X., Wang, S., Dong, Z.Y. (eds.) ADMA 2005. LNCS (LNAI), vol. 3584, pp. 591–597. Springer, Heidelberg (2005).  https://doi.org/10.1007/11527503_70Google Scholar
  26. 26.
    Meneses, C.N., Lu, Z., Oliveira, C.A.S., Pardalos, P.M.: Optimal solutions for the closest-string problem via integer programming. INFORMS J. Comput. 16(4), 419–429 (2004)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Nerbonne, J., Hinrichs, E.W.: Linguistic distances. In: Proceedings of the Workshop on Linguistic Distances, Sydney, July 2006, pp. 1–6 (2006)Google Scholar
  28. 28.
    Nicolas, F., Rivals, E.: Complexities of the centre and median string problems. In: Baeza-Yates, R., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676, pp. 315–327. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-44888-8_23Google Scholar
  29. 29.
    Nicolas, F., Rivals, E.: Hardness results for the center and median string problems under the weighted and unweighted edit distances. J. Discrete Algorithms 3(2–4), 390–415 (2005)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Popescu, M., Dinu, L.P.: Rank distance as a stylistic similarity. In: 22nd International Conference on Computational Linguistics, Posters Proceedings, COLING 2008, 18–22 August 2008, Manchester, UK, pp. 91–94 (2008)Google Scholar
  31. 31.
    Popov, V.Y.: Multiple genome rearrangement by swaps and by element duplications. Theor. Comput. Sci. 385(1–3), 115–126 (2007)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Ritter, J.: An efficient bounding sphere. In: Graphics Gems, pp. 301–303. Elsevier (1990)Google Scholar
  33. 33.
    Sun, Y., et al.: Combining genomic and network characteristics for extended capability in predicting synergistic drugs for cancer. Nat. Commun. 6, 8481 (2015)Google Scholar
  34. 34.
    Wang, L., Dong, L.: Randomized algorithms for motif detection. J. Bioinf. Comput. Biol. 3(5), 1039–1052 (2005)Google Scholar
  35. 35.
    Wooley, J.C.: Trends in computational biology: a summary based on a RECOMB plenary lecture. J. Comput. Biol. 6(3/4), 459–474 (1999)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Liviu P. Dinu
    • 1
    • 2
  • Bogdan C. Dumitru
    • 1
    • 2
  • Alexandru Popa
    • 1
    • 3
    Email author
  1. 1.Faculty of Mathematics and Computer ScienceUniversity of BucharestBucharestRomania
  2. 2.Human Language Technologies Research CenterUniversity of BucharestBucharestRomania
  3. 3.National Institute for Research and Development in InformaticsBucharestRomania

Personalised recommendations