Advertisement

Granular Computing (GC) Demonstrates Interactions Between Depression and Symptoms Development in Parkinson’s Disease Patients

  • Andrzej W. PrzybyszewskiEmail author
  • Jerzy Paweł Nowacki
  • Aldona Drabik
  • Stanislaw Szlufik
  • Piotr Habela
  • Dariusz M. Koziorowski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11432)

Abstract

There is high frequency incidence of depressive symptoms in neurodegenerative diseases (ND) but reasons for it is not well understood. Parkinsons disease (PD) is often evoked by strong emotional event and related to reduced level of dopamine (reward hormone). Similarly to PD, in older (over 65 year of age) subjects with late onset Alzheimer’s disease (LOAD) have first symptoms related to depression (95%). Present work is devoted to the question if evaluation of depression can help to predict PD symptoms? We have gathered results of: neurological (disease duration, values of Unified Parkinson’s Disease Rating Scale (UPDRS)), neuropsychological (depression – Beck test, PDQ39 (life quality), Epworth (sleep problems)) and eye movement (RS – reflexive saccadic) tests. We have tested 24 PD patients only with medical treatment (BMT-group), and 23 PD with medical and recent DBS (deep brain stimulation DBS-group), and 15 older DBS (POP-group) treatments during one and half year with testing every six months (W1, W2, W3). From rules found with help of GC (RST-rough set theory) in BMTW1 (patients BMT during first visit W1) we have predicted UPDRS in BMTW2 and BMTW3 with accuracies (acc.) 0.765 (0.7 without Beck result) and 0.8 (0.7 without Beck result). By using BMTW1 rules we could predict disease progression (UPDRS) of another group of patients – DBSW1 group with accuracy of 0.765 but not DBSW2/W3 patients. By using DBSW2 rules we could predict UPDRS of DBSW3 (acc. = 0.625), POPW1 (acc. = 0.77), POPW2 (acc. = 0.5), POPW3 (acc. = 0.33). By adding depression attribute and by using GC we could make better predictions of disease progressions in many different groups of patients than without it.

Keywords

Neurodegeneration Rough set theory KDD Granular computing 

Notes

Ethics Statement

This study was carried out in accordance with the recommendations of Bioethics Committee of Warsaw Medical University with written informed consent from all subjects. All subjects gave written informed consent in accordance with the Declaration of Helsinki. The Bioethics Committee of Warsaw Medical University approved the protocol.

References

  1. 1.
    Reijnders, J.S., Ehrt, U., Weber, W.E., et al.: A systematic review of prevalence studies of depression in Parkinson’s disease. Mov. Disord. 23, 183–189 (2008)Google Scholar
  2. 2.
    Schrag, A., Horsfall, L., Walters, K., Noyce, A.: Petersen I prediagnotic presentations of Parkinson’s disease in primary care: a case-control study. Lancet Neurol. 14(1), 57–64 (2015)Google Scholar
  3. 3.
    Darweesh, S.K.L., et al.: Trajectories of prediagnostic functioning in Parkinson’s disease. Brain 140, 429–441 (2017)Google Scholar
  4. 4.
    Remy, P., Doder, M., Lees, A., Turjanski, N., Brook, D.: Depression in Parkinson’s disease: loss of dopamine and noradrenaline innervation in the limbic system. Brain 128(Pt 6), 1314–1322 (2005)Google Scholar
  5. 5.
    GPDS Steering Committee: Factors impacting on quality of life in Parkinson’s disease: results from an international survey. Mov. Disord. 17, 60–67 (2002)Google Scholar
  6. 6.
    Ishihara, L., Brayne, C.: A systematic review of depression and mental illness preceding Parkinson’s disease. Acta Neurol. Scand. 113, 211–220 (2006)Google Scholar
  7. 7.
    Przybyszewski, A.W.: Logical rules of visual brain: from anatomy through neurophysiology to cognition. Cognit. Syst. Res. 11, 53–66 (2010)Google Scholar
  8. 8.
    Przybyszewski, A.W.: The neurophysiological bases of cognitive computation using rough set theory. In: Peters, J.F., Skowron, A., Rybiński, H. (eds.) Transactions on Rough Sets IX. LNCS, vol. 5390, pp. 287–317. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-89876-4_16Google Scholar
  9. 9.
    Przybyszewski, A.W., Kon, M., Szlufik, S., Szymanski, A., Koziorowski, D.M.: Multimodal learning and intelligent prediction of symptom development in individual parkinson’s patients. Sensors 16(9), 1498 (2016).  https://doi.org/10.3390/s16091498Google Scholar
  10. 10.
    Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer, Dordrecht (1991)zbMATHGoogle Scholar
  11. 11.
    Bazan, J., Nguyen, S.H., Nguyen, T.T., Skowron, A., Stepaniuk, J.: Decision rules synthesis for object classification. In: Orłowska, E. (ed.) Incomplete Information: Rough Set Analysis, pp. 23–57. Physica–Verlag, Heidelberg (1998)Google Scholar
  12. 12.
    Bazan, J., Nguyen, H.S., Nguyen, S.H., Synak, P., Wróblewski, J.: Rough set algorithms in classification problem. In: Polkowski, L., Tsumoto, S., Lin, T. (eds.) Rough Set Methods and Applications, pp. 49–88. Physica-Verlag, Heidelberg (2000)zbMATHGoogle Scholar
  13. 13.
    Grzymała-Busse, J.: A new version of the rule induction system LERS. Fundamenta Informaticae 31(1), 27–39 (1997)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Bazan, J.G., Szczuka, M.: The rough set exploration system. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets III. LNCS, vol. 3400, pp. 37–56. Springer, Heidelberg (2005).  https://doi.org/10.1007/11427834_2zbMATHGoogle Scholar
  15. 15.
    Bazan, J.G., Szczuka, M.: RSES and RSESlib - a collection of tools for rough set computations. In: Ziarko, W., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 106–113. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45554-X_12zbMATHGoogle Scholar
  16. 16.
    Przybyszewski, A.W., Szlufik, S., Habela, P., Koziorowski, D.M.: Rules determine therapy-dependent relationship in symptoms development of Parkinson’s disease patients. In: Nguyen, N.T., Hoang, D.H., Hong, T.-P., Pham, H., Trawiński, B. (eds.) ACIIDS 2018. LNCS (LNAI), vol. 10752, pp. 436–445. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-75420-8_42Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Andrzej W. Przybyszewski
    • 1
    Email author
  • Jerzy Paweł Nowacki
    • 1
  • Aldona Drabik
    • 1
  • Stanislaw Szlufik
    • 2
  • Piotr Habela
    • 1
  • Dariusz M. Koziorowski
    • 2
  1. 1.Polish-Japanese Academy of Information TechnologyWarsawPoland
  2. 2.Neurology, Faculty of Health ScienceMedical University WarsawWarsawPoland

Personalised recommendations