An Improved Resampling Scheme for Particle Filtering in Inertial Navigation System

  • Wan Mohd Yaakob Wan BejuriEmail author
  • Mohd Murtadha Mohamad
  • Raja Zahilah Raja Mohd Radzi
  • Sheikh Hussain Shaikh Salleh
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11432)


The particle filter provides numerical approximation to the nonlinear filtering problem in inertial navigation system. In the heterogeneous environment, reliable state estimation is the critical issue. The state estimation will increase the positioning error in the overall system. To address such problem, the sequential implementation resampling (SIR) considers cause and environment for every specific resampling task decision in particle filtering. However, by only considering the cause and environment in a specific situation, SIR cannot generate reliable state estimation during their process. This paper proposes an improved resampling scheme to particle filtering for different sample impoverishment environment. Adaptations relating to noise measurement and number of particles need to be made to the resampling scheme to make the resampling more intelligent, reliable and robust. Simulation results show that proposed resampling scheme achieved improved performance in term of positioning error in inertial navigation system In conclusion, the proposed scheme of sequential implementation resampling proves to be valuable solution for different sample impoverishment environment.


Resampling Particle filter Inertial navigation system and indoor positioning 


  1. 1.
    Othmane, L.B., Weffers, H., Ranchal, R., Angin, P., Bhargava, B., Mohamad, M.M.: A case for societal digital security culture. In: Janczewski, L.J., Wolfe, H.B., Shenoi, S. (eds.) SEC 2013. IAICT, vol. 405, pp. 391–404. Springer, Heidelberg (2013). Scholar
  2. 2.
    Bejuri, W.M.Y.W., Mohamad, M.M., Sapri, M.: Ubiquitous positioning: a taxonomy for location determination on mobile navigation system. Signal Image Process. Int. J. SIPIJ 2(1), 24–34 (2011)Google Scholar
  3. 3.
    Schougaard, K.R., Grønbæk, K., Scharling, T.: Indoor pedestrian navigation based on hybrid route planning and location modeling. In: Kay, J., Lukowicz, P., Tokuda, H., Olivier, P., Krüger, A. (eds.) Pervasive 2012. LNCS, vol. 7319, pp. 289–306. Springer, Heidelberg (2012). Scholar
  4. 4.
    Bejuri, W.M.Y.W., Mohamad, M.M., Radzi, R.Z.R.M., Salleh, M., Yusof, A.F.: A proposal of location aware shopping assistance using memory-based resampling. In: Kim, K.J., Joukov, N. (eds.) ICMWT 2017. LNEE, vol. 425, pp. 482–486. Springer, Singapore (2018). Scholar
  5. 5.
    Bejuri, W.M.Y.W., Mohamad, M.M., Sapri, M., Rosly, M.A.: Performance evaluation of mobile U-navigation based on GPS/WLAN hybridization. J. Converg. Inf. Technol. JCIT 7(12), 235–246 (2012)Google Scholar
  6. 6.
    Ahmadi, K., Salari, E.: Social-spider optimised particle filtering for tracking of targets with discontinuous measurement data. IET Comput. Vis. 11(3), 246–254 (2017)Google Scholar
  7. 7.
    Wang, H., Nguang, S.K.: Multi-target video tracking based on improved data association and mixed Kalman/H∞ filtering. IEEE Sens. J. 16(21), 7693–7704 (2016)Google Scholar
  8. 8.
    Bejuri, W.M.Y.W., Saidin, W.M.N.W.M., Bin Mohamad, M.M., Sapri, M., Lim, K.S.: Ubiquitous positioning: integrated GPS/Wireless LAN positioning for wheelchair navigation system. In: Selamat, A., Nguyen, N.T., Haron, H. (eds.) ACIIDS 2013. LNCS (LNAI), vol. 7802, pp. 394–403. Springer, Heidelberg (2013). Scholar
  9. 9.
    Bejuri, W.M.Y.W., Mohamad, M.M., Zahilah, R.: Optimization of Rao-Blackwellized particle filter in activity pedestrian simultaneously localization and mapping (SLAM): an initial proposal. Int. J. Secur. Appl. 9(11), 377–390 (2015)Google Scholar
  10. 10.
    Bejuri, W.M.Y.W., Mohamad, M.M., Raja Mohd Radzi, R.Z.: Optimisation of emergency rescue location (ERL) using KLD resampling: an initial proposal. Int. J. U- E- Serv. Sci. Technol. 9(2), 249–262 (2016)Google Scholar
  11. 11.
    Metia, S., Ha, Q.P., Duc, H.N., Azzi, M.: Estimation of power plant emissions with unscented Kalman filter. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 1–10 (2018)Google Scholar
  12. 12.
    Metia, S., Oduro, S.D., Duc, H.N., Ha, Q.: Inverse air-pollutant emission and prediction using extended fractional Kalman filtering. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9(5), 2051–2063 (2016)Google Scholar
  13. 13.
    Yao, S., Wang, Y., Niu, B.: An efficient cascaded filtering retrieval method for big audio data. IEEE Trans. Multimed. 17(9), 1450–1459 (2015)Google Scholar
  14. 14.
    Zhou, J., Gu, G., Chen, X.: Distributed Kalman filtering over wireless sensor networks in the presence of data packet drops. IEEE Trans. Autom. Control, 1 (2018)Google Scholar
  15. 15.
    Ding, Y., Huang, J., Pelachaud, C.: Audio-driven laughter behavior controller. IEEE Trans. Affect. Comput. 8(4), 546–558 (2017)Google Scholar
  16. 16.
    Muñoz-Romero, S., Arenas-García, J., Gómez-Verdejo, V.: Nonnegative OPLS for supervised design of filter banks: application to image and audio feature extraction. IEEE Trans. Multimed. 20(7), 1751–1766 (2018)Google Scholar
  17. 17.
    Chauhan, G.S., Huseynov, F.: Corporate financing and target behavior: new tests and evidence. J. Corp. Finance 48, 840–856 (2018)Google Scholar
  18. 18.
    Finlay, W., Marshall, A., McColgan, P.: Financing, fire sales, and the stockholder wealth effects of asset divestiture announcements. J. Corp. Finance 50, 323–348 (2018)Google Scholar
  19. 19.
    González-Fernández, M., González-Velasco, C.: Can Google econometrics predict unemployment? Evidence from Spain. Econ. Lett. 170, 42–45 (2018)Google Scholar
  20. 20.
    Wilcox, B.A., Hamano, F.: Kalman’s expanding influence in the econometrics discipline. IFAC-Pap. 50(1), 637–644 (2017)Google Scholar
  21. 21.
    Cappe, O., Godsill, S.J., Moulines, E.: An overview of existing methods and recent advances in sequential Monte Carlo. Proc. IEEE 95(5), 899–924 (2007)Google Scholar
  22. 22.
    Doucet, A., de Freitas, N., Gordon, N.: An introduction to sequential Monte Carlo methods. In: Doucet, A., de Freitas, N., Gordon, N. (eds.) Sequential Monte Carlo Methods in Practice. Springer, New York (2001). Scholar
  23. 23.
    Doucet, A., Godsill, S., Andrieu, C.: On sequential Monte Carlo sampling methods for Bayesian filtering. Stat. Comput. 10(3), 197–208 (2000)Google Scholar
  24. 24.
    Jung, S.-H., Lee, G., Han, D.: Methods and tools to construct a global indoor positioning system. IEEE Trans. Syst. Man Cybern. Syst. (2017)Google Scholar
  25. 25.
    Li, X., Wei, D., Lai, Q., Xu, Y., Yuan, H.: Smartphone-based integrated PDR/GPS/Bluetooth pedestrian location. Adv. Space Res. 59(3), 877–887 (2017)Google Scholar
  26. 26.
    Li, Y., Zhuang, Y., Zhang, P., Lan, H., Niu, X., El-Sheimy, N.: An improved inertial/wifi/magnetic fusion structure for indoor navigation. Inf. Fusion 34, 101–119 (2017)Google Scholar
  27. 27.
    Liu, Q., Qiu, J., Chen, Y.: Research and development of indoor positioning. China Commun. 13(Supplement 2), 67–79 (2016)Google Scholar
  28. 28.
    Bejuri, W.M.Y.W., Mohamad, M.M.: Wireless LAN/FM radio-based robust mobile indoor positioning: an initial outcome. Int. J. Softw. Eng. Its Appl. 8(2), 313–324 (2014)Google Scholar
  29. 29.
    Bejuri, W.M.Y.W., Mohamad, M.M., Sapri, M., Rahim, M.S.M., Chaudry, J.A.: Performance evaluation of spatial correlation-based feature detection and matching for automated wheelchair navigation system. Int. J. Intell. Transp. Syst. Res. 12(1), 9–19 (2014)Google Scholar
  30. 30.
    Bejuri, W.M.Y.W., Mohamad, M.M.: Performance analysis of grey-world-based feature detection and matching for mobile positioning systems. Sens. Imaging 15(1), 1–24 (2014)Google Scholar
  31. 31.
    Ren, H., Chai, P., Zhang, Y., Xu, D., Xu, T., Li, X.: Semiautomatic indoor positioning and navigation with mobile devices. Ann. GIS, 1–12 (2017)Google Scholar
  32. 32.
    Albert, M.V., Shparii, I., Zhao, X.: The applicability of inertial motion sensors for locomotion and posture. In: Barbieri, F.A., Vitório, R. (eds.) Locomotion and Posture in Older Adults, pp. 417–426. Springer, Cham (2017). Scholar
  33. 33.
    Retscher, G., Roth, F.: Wi-Fi fingerprinting with reduced signal strength observations from long-time measurements. In: Gartner, G., Huang, H. (eds.) Progress in Location-Based Services 2016. LNGC, pp. 3–25. Springer, Cham (2017). Scholar
  34. 34.
    Gustafsson, F., et al.: Particle filters for positioning, navigation, and tracking. IEEE Trans. Signal Process. 50(2), 425–437 (2002)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Wan Mohd Yaakob Wan Bejuri
    • 1
    • 3
    Email author
  • Mohd Murtadha Mohamad
    • 1
  • Raja Zahilah Raja Mohd Radzi
    • 1
  • Sheikh Hussain Shaikh Salleh
    • 2
  1. 1.School of ComputingUniversiti Teknologi MalaysiaJohor BahruMalaysia
  2. 2.Next Tech PLT.SkudaiMalaysia
  3. 3.Faculty of Information and Communication TechnologyUniversiti Teknikal Malaysia MelakaDurian TunggalMalaysia

Personalised recommendations