Advertisement

PCA Kernel Based Extreme Learning Machine Model for Detection of NS1 from Salivary SERS Spectra

  • Nur Hainani Othman
  • Khuan Y. LeeEmail author
  • Afaf Rozan Mohd Radzol
  • Wahidah Mansor
  • N. A. Z. M. Zulkimi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11432)

Abstract

Use of NS1 as a biomarker in saliva has led to the non-invasive and early detection of Flaviviridae related diseases. Saliva is preferred as medium of detection because of its advantages such as non-invasive, painless and easy to collect. Work here intends to compare the performance of KELM classifier with linear and RBF kernels for classification of NS1 from salivary SERS spectra. Prior to KELM, PCA with different termination criteria (Cattle Scree test, CPV and EOC) are used to extract important features and reduce the dimension of SERS spectra dataset. Regularization coefficient (C-value) for linear kernel and Regularization coefficient (C-value) and \( \gamma \)-value for RBF kernel are varied to find the optimum KELM classifier model. For linear kernel, 100% accuracy, precision, sensitivity, specificity is achieved for Linear model with EOC criterion and C-value set to 0.1, 0.2, 0.5, 1 and 2. For RBF kernel, 100% performance of accuracy, precision, sensitivity and specificity is achieved with RBF model with EOC criterion and values of 0.04, 0.06, 0.08, 0.1, 0.2, 0.4, 0.6, 0.8 and 1. The C-value is fixed to 1. The best Kappa value of 1 is obtained when all performance indicators scored 100%. For both Linear-KELM and RBF-KELM, EOC termination criterion gives the highest performance. It also observed that KELM classifier is data dependent.

Keywords

NS1 Saliva SERS PCA KELM Linear kernel and RBF kernel 

Notes

Acknowledgment

The author would like to thank the Ministry of Education (MOE) of Malaysia, for providing the research funding 600-RMI/ERGS 5/3 (20/2013); the Research Management Institute and Faculty of Electrical Engineering, Universiti Teknologi MARA, Selangor, Malaysia, for the support and assistance given to the authors in carrying out this research.

References

  1. 1.
    Gubler, D.J.: Dengue and dengue hemorrhagic fever. Clin. Microbiol. Rev. 11(3), 480–496 (1998).  https://doi.org/10.1201/9780203752463CrossRefGoogle Scholar
  2. 2.
    Darwish, N.T., Alias, Y.B., Khor, S.M.: An introduction to dengue-disease diagnostics. TrAC Trends Anal. Chem. 67, 45–55 (2015).  https://doi.org/10.1016/j.trac.2015.01.005CrossRefGoogle Scholar
  3. 3.
    Laman Utama iDengue. http://idengue.remotesensing.gov.my/idengue. Accessed 21 May 2018
  4. 4.
    Radzol, A.R.M., Lee, K.Y., Mansor, W., Ariffin, N.: Biostatistical analysis of principle component of salivary Raman spectra for NS1 infection. In: 2016 IEEE EMBS Conference on Biomedical Engineering and Sciences, pp. 13–18. IEEE, Kuala Lumpur (2016).  https://doi.org/10.1109/iecbes.2016.7843406
  5. 5.
    Anand, A.M., Sistla, S., Dhodapkar, R., Hamide, A., Biswal, N., Srinivasan, B.: Evaluation of NS1 antigen detection for early diagnosis of dengue in a tertiary hospital in Southern India. J. Clin. Diagn. Res. 10(4), 1–4 (2016).  https://doi.org/10.7860/JCDR/2016/15758.7562CrossRefGoogle Scholar
  6. 6.
    Yusoff, N.A., Soin, N., Ibrahim, F.: Lab-on-a-disk as a potential microfluidic platform for dengue NS1-ELISA. In: 2009 IEEE Symposium on Industrial Electronics & Applications, pp. 946–950. IEEE, Kuala Lumpur (2009).  https://doi.org/10.1109/isiea.2009.5356330
  7. 7.
    Yusoff, N., Soin, N., Rahman, N., Raja Abd Rahman, R.N., Abd Kahar, M.A., Ibrahim, F.: Binding characteristics study for dengue virus non-structural protein 1 of Antigen and its antibody by using circular dichroism technique. In: 2009 International Conference for Technical Postgraduates (TECHPOS), pp. 1–6. IEEE, Kuala Lumpur (2009).  https://doi.org/10.1109/techpos.2009.5412060
  8. 8.
    Zainah, S., et al.: Performance of a commercial rapid dengue NS1 antigen immunochromatography test with reference to dengue NS1 antigen-capture ELISA. J. Virol. Methods 155(2), 157–160 (2009).  https://doi.org/10.1016/j.jviromet.2008.10.016CrossRefGoogle Scholar
  9. 9.
    Anders, K.L., et al.: An evaluation of dried blood spots and oral swabs as alternative specimens for the diagnosis of dengue and screening for past dengue virus exposure. Am. J. Trop. Med. Hyg. 87(1), 165–170 (2012).  https://doi.org/10.4269/ajtmh.2012.11-0713CrossRefGoogle Scholar
  10. 10.
    Fleischmann, M., Hendra, P.J., McQuillan, A.J.: Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26, 163–166 (1974).  https://doi.org/10.1016/0009-2614(74)85388-1CrossRefGoogle Scholar
  11. 11.
    Hadjigeorgiou, K., Kastanos, E., Pitris, C.: Surface enhanced Raman spectroscopy as a tool for rapid and inexpensive diagnosis and antibiotic susceptibility testing for urinary tract infections. In: 2016 IEEE Healthcare Innovation Point-Of-Care Technologies Conference (HI-POCT), pp. 158–161. IEEE, Cancun (2016).  https://doi.org/10.1109/hic.2016.7797721
  12. 12.
    Yan, W., et al.: Preliminary study on the quick detection of acquired immure deficiency syndrome by saliva analysis using surface enhanced Raman spectroscopic technique. In: 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 885–887. IEEE, Minneapolis (2009).  https://doi.org/10.1109/iembs.2009.5333131
  13. 13.
    Wang, Y., et al.: A feasibility study of early detection of lung cancer by saliva test using surface enhanced Raman scattering. In: 5th International Conference on BioMedical Engineering and Informatics, pp. 135–139. IEEE, Chongqing (2012).  https://doi.org/10.1109/bmei.2012.6513160
  14. 14.
    Huang, C.Y., et al.: Hybrid SVM/CART classification of pathogenic species of bacterial meningitis with surface-enhanced Raman scattering. In: 2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 406–409. IEEE, Hong Kong (2010).  https://doi.org/10.1109/bibm.2010.5706600
  15. 15.
    Santiago-Cordoba, M.A., Romano, P.R., Mackay, A., Demirel, M.C.: Raman based hepatocellular carcinoma biomarker detection. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3672–3675. IEEE, Boston (2011).  https://doi.org/10.1109/iembs.2011.6090620
  16. 16.
    Joliffer, I.T.: Principal Component Analysis. Springer Series of Statistic, 2nd edn. Springer, Heidelberg (2002).  https://doi.org/10.2307/1270093CrossRefGoogle Scholar
  17. 17.
    Salma, M.U.: BAT-ELM: a bio inspired model for prediction of breast cancer data. In: 2015 International Conference on Applied and Theoretical Computing and Communication Technology (iCATccT), pp. 501–506. IEEE, Davangere (2015).  https://doi.org/10.1109/icatcct.2015.7456936
  18. 18.
    Ismaeel, S., Miri, A., Chourishi, D.: Using the extreme learning machine (ELM) technique for heart disease diagnosis. In: 2015 IEEE Canada International Humanitarian Technology Conference (IHTC2015), pp. 1–3. IEEE, Ottawa (2015).  https://doi.org/10.1109/ihtc.2015.7238043
  19. 19.
    Shahsavari, M.K., Rashidi, H., Bakhsh, H.R.: Efficient classification of Parkinsons disease using extreme learning machine and hybrid particle swarm optimization. In: 2016 4th International Conference on Control, Instrumentation, and Automation (ICCIA), pp. 148–154. IEEE, Qazvin (2016).  https://doi.org/10.1109/icciautom.2016.7483152
  20. 20.
    Lu, S., Wang, H., Wu, X., Wang, S.: Pathological brain detection based on online sequential extreme learning machine. In: 2016 International Conference on Progress in Informatics and Computing (PIC), pp. 219–223. IEEE, Shanghai (2016).  https://doi.org/10.1109/pic.2016.7949498
  21. 21.
    Kumar, S.J.J., Ravichandran, C.G.: Macular Edema severity detection in colour fundus images based on ELM classifier. In: 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), pp. 926–933. IEEE, Palladam (2017).  https://doi.org/10.1109/i-smac.2017.8058316
  22. 22.
    Mishra, V.K., Bajaj, V., Kumar, A.: Classification of normal, ALS, and myopathy EMG signals using ELM classifier. In: 2016 2nd International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB), pp. 455–459. IEEE, Chennai (2016).  https://doi.org/10.1109/aeeicb.2016.7538330
  23. 23.
    Kaiser, H.F.: The application of electronic computers to factor analysis. Educ. Psychol. Meas. 20(1), 141–151 (1960).  https://doi.org/10.1177/001316446002000116CrossRefGoogle Scholar
  24. 24.
    Cattell, R.B.: The scree test for the number of factors. Multivariate Behav. Res. 1(2), 245–276 (1966).  https://doi.org/10.1207/s15327906mbr0102CrossRefGoogle Scholar
  25. 25.
    Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: a new learning scheme of feed forward neural networks. In: Proceedings of International Joint Conference on Neural Networks (IJCNN2004), pp. 985–990. IEEE, Budapest (2004).  https://doi.org/10.1109/ijcnn.2004.1380068
  26. 26.
    Ding, S., Xu, X., Nie, R.: Extreme learning machine and its applications. Neural Comput. Appl. 25(3–4), 549–556 (2014).  https://doi.org/10.1007/s00521-013-1522-8CrossRefGoogle Scholar
  27. 27.
    Radzol, A.R.M., Lee, K.Y., Mansor, W.: Nonstructural protein 1 characteristic peak from NS1-saliva mixture with surface-enhanced Raman spectroscopy. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2396–2399. IEEE, Osaka (2013).  https://doi.org/10.1109/embc.2013.6610021
  28. 28.
    Radzol, A.R.M., Lee, K.Y., Mansor, W., Othman, N.H.: Principal component analysis for detection of NS1 molecules from Raman spectra of saliva. In: 11th International Colloquium on Signal Processing & Its Applications (CSPA), pp. 168–173. IEEE, Kuala Lumpur (2015).  https://doi.org/10.1109/cspa.2015.7225640
  29. 29.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nur Hainani Othman
    • 1
  • Khuan Y. Lee
    • 1
    • 2
    Email author
  • Afaf Rozan Mohd Radzol
    • 1
    • 2
  • Wahidah Mansor
    • 1
    • 2
  • N. A. Z. M. Zulkimi
    • 1
  1. 1.Faculty of Electrical EngineeringUniversiti Teknologi MARAShah AlamMalaysia
  2. 2.Computational Intelligence Detection RIG, Pharmaceutical and Lifesciences Communities of ResearchUniversiti Teknologi MARAShah AlamMalaysia

Personalised recommendations