Advertisement

Design and Analysis of LMMSE Filter for MR Image Data

  • Jan KubicekEmail author
  • Alice Krestanova
  • Martina Polachova
  • David Oczka
  • Marek Penhaker
  • Martin Cerny
  • Martin Augustynek
  • Ondrej Krejcar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11432)

Abstract

This paper deals with the method of removing the noise in MRI images- During data capture and transmission, the data is disturbed by a noise component that cannot be completely reproduced exclude. Noise is defined in signal theory as additive information that was added to the original purchasing equipment or during the transport. Study of noise models is a very important part of image processing. On the images are applied noise generators, and design LMMSE filter, which is used for shaded images. They were tested salt and pepper noise, Gaussian noise and Rican noise. For each noise, more than one level of this noise. Another task was objective and subjective evaluation of the success of the filtration.

Keywords

Noise Gauss distribution Rican distribution LMMSE filter 

Notes

Acknowledgment

The work and the contributions were supported by the project SV4508811/2101Biomedical Engineering Systems XIV’. This study was also supported by the research project The Czech Science Foundation (GACR) 2017 No. 17-03037S Investment evaluation of medical device development run at the Faculty of Informatics and Management, University of Hradec Kralove, Czech Republic. This study was supported by the research project The Czech Science Foundation (TACR) ETA No. TL01000302 Medical Devices development as an effective investment for public and private entities.

References

  1. 1.
    Aja-Fernandez, S.: Selected papers on statistical noise analysis in MRI: LPI. Universidad de Valladolid, Springer International Publishing, Valladolid (2015)Google Scholar
  2. 2.
    Novozámský, A.: NPGR032 – CVIČENÍ III: Šum a jeho odstranění – teorie & praxe. Department of Image Processing. Institute of Information Theory and Automation of the ASCR, Praha (2015)Google Scholar
  3. 3.
    Patidar, P., Gupta, M., Sprivastava, S., Nagawat, A.K.: Image de-noising by various filters for different noise. Int. J. Comput. Appl. 9(4), 45–50 (2010)Google Scholar
  4. 4.
    Pikora, J.: Implementace grafických filtrů pro zpracování rastrového obrazu. Bakalářská práce. Masarykova univerzita, Brno (2008)Google Scholar
  5. 5.
    Roy, V.: Spatial and transform domain filtering method for image de-noising: a review. Int. J. Mod. Educ. Comput. Sci. 5(7), 41–49 (2013)Google Scholar
  6. 6.
    Varghese, J., Khan, M.S., Siddappa, M., Subash, S., Ghouse, M., Hussain, O.B.: Efficient adaptive fuzzy-based switching weighted average filter for the restoration of impulse corrupted digital images. IET Image Process. 8(4), 199–206 (2014)Google Scholar
  7. 7.
    Kaur, G., Kumar, R., Kainth, K.: A review paper on different noise types and digital image processing. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 6(6), 562–565 (2016)Google Scholar
  8. 8.
    Roy, V.: Spatial and transform domain filtering method for image de-noising: a review. Int. J. Mod. Educ. Comput. Sci. 5(7), 41–49 (2013)CrossRefGoogle Scholar
  9. 9.
    Aja-Fernandez, S., Alberola-Lopez, C., Westin, F.: Noise and signal estimation in magnitude MRI and Rician distributed images: a LMMSE approach. IEEE Trans. Image Process. 17(8), 1383–1398 (2008)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Gudbjartsson, H., Patz, S.: The Rician distribution of noisy MRI data. Magn. Reson. Med. 36(2), 332–333 (1996)CrossRefGoogle Scholar
  11. 11.
    Walek, P., Lamoš, M., Jan, J.: Analýza biomedicínských obrazů. VUT, Brno (2013)Google Scholar
  12. 12.
    Kubicek, J., Augustynek, M., Vodakova, A., Penhaker, M., Cerny, M., Oczka, D.: Segmentation and modeling of scattered RTG irradiation on quality of skiagraphy images in clinical conditions. Paper presented at the 2017 IEEE conference on big data and analytics, ICBDA 2017, 2018-January, pp. 105–110. The Rician distribution of noisy MRI data (2018)Google Scholar
  13. 13.
    Bryjova, I., Kubicek, J., Molnarova, K., Peter, L., Penhaker, M., Kuca, K.: Multiregional segmentation modeling in medical ultrasonography: extraction, modeling and quantification of skin layers and hypertrophic scars. In: Nguyen, N.T., Papadopoulos, G.A., Jędrzejowicz, P., Trawiński, B., Vossen, G. (eds.) ICCCI 2017. LNCS (LNAI), vol. 10449, pp. 182–192. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-67077-5_18CrossRefGoogle Scholar
  14. 14.
    Kubicek, J., et al.: Automated extraction and modeling of calcifications and blood stream volumetric parameters. Front. Artif. Intell. Appl. 297, 256–269 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jan Kubicek
    • 1
    Email author
  • Alice Krestanova
    • 1
  • Martina Polachova
    • 1
  • David Oczka
    • 1
  • Marek Penhaker
    • 1
  • Martin Cerny
    • 1
  • Martin Augustynek
    • 1
  • Ondrej Krejcar
    • 2
  1. 1.FEECSVSB-Technical University of OstravaOstrava-PorubaCzech Republic
  2. 2.Faculty of Informatics and Management, Center for Basic and Applied ResearchUniversity of Hradec KraloveHradec KraloveCzech Republic

Personalised recommendations