Advertisement

Co-exploring a Search Space in a Group Recommender System

  • Dai YodogawaEmail author
  • Kazuhiro Kuwabara
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11432)

Abstract

This paper presents a group recommendation system that focuses on helping users to search for an item that is agreed upon by all users in a group. We consider the case with a group of two users as a starting point and regard the search process for the recommended item as a negotiation process between the two users. More specifically, after the user’s preferences are inputted in the proposed system, the system maps possible items on a two dimensional-plane according to the item’s utility values for the two users. The users are expected to negotiate their preferences to reach an agreement. To examine the characteristics of the proposed system, simulation experiments are conducted with four different user models, which are created based on conflict resolution behaviors as described in human psychology literature. These four user types are represented by different parameter values to control their behaviors. The paper presents the simulation experiments and their results.

Keywords

Group recommender system Negotiation model User model Simulation 

References

  1. 1.
    Bekkerman, P., Kraus, S., Ricci, F.: Applying cooperative negotiation methodology to group recommendation problem. In: Felfernig, A., Zanker, M. (eds.) Proceedings of the ECAI 2006 Workshop on Recommender Systems, pp. 72–75 (2006)Google Scholar
  2. 2.
    Carvalho, L.A.M.C., Macedo, H.T.: Users’ satisfaction in recommendation systems for groups: an approach based on noncooperative games. In: Proceedings of the 22nd International Conference on World Wide Web, WWW 2013 Companion, pp. 951–958. ACM, New York (2013). https://doi.org/10.1145/2487788.2488090
  3. 3.
    Delic, A., Neidhardt, J., Nguyen, T.N., Ricci, F.: An observational user study for group recommender systems in the tourism domain. Inf. Technol. Tourism 19(1), 87–116 (2018).  https://doi.org/10.1007/s40558-018-0106-yCrossRefGoogle Scholar
  4. 4.
    Endriss, U.: Monotonic concession protocols for multilateral negotiation. In: Proceedings of the Fifth International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS 2006, pp. 392–399. ACM, New York (2006).  https://doi.org/10.1145/1160633.1160702
  5. 5.
    Felfernig, A., Boratto, L., Stettinger, M., Tkalčič, M.: GroupRecommender Systems - An Introduction. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-75067-5CrossRefGoogle Scholar
  6. 6.
    Garcia, I., Sebastia, L., Pajares, S., Onaindia, E.: Approaches to preference elicitation for group recommendation. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2011. LNCS, vol. 6786, pp. 547–561. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-21934-4_45CrossRefGoogle Scholar
  7. 7.
    Kilmann, R.H., Thomas, K.W.: Interpersonal conflict-handling behavior asreflections of Jungian personality dimensions. Psychol. Rep. 37(3), 971–980 (1975).  https://doi.org/10.2466/pr0.1975.37.3.971CrossRefGoogle Scholar
  8. 8.
    Kompan, M., Bielikova, M.: Group recommendations: survey and perspectives. Comput. Inf. 33(2), 446–476 (2014). http://www.cai.sk/ojs/index.php/cai/article/viewArticle/1077Google Scholar
  9. 9.
    Álvarez Márquez, J.O., Ziegler, J.: Negotiation and reconciliation of preferences in a group recommender system. J. Inf. Process. 26, 186–200 (2018).  https://doi.org/10.2197/ipsjjip.26.186CrossRefGoogle Scholar
  10. 10.
    McCarthy, K., McGinty, L., Smyth, B., Salamó, M.: The needs of the many: a case-based group recommender system. In: Roth-Berghofer, T.R., Göker, M.H., Güvenir, H.A. (eds.) ECCBR 2006. LNCS (LNAI), vol. 4106, pp. 196–210. Springer, Heidelberg (2006).  https://doi.org/10.1007/11805816_16CrossRefGoogle Scholar
  11. 11.
    Nguyen, T.N., Ricci, F.: Situation-dependent combination of long-term and session-based preferences in group recommendations: an experimental analysis. In: Proceedings of the 33rd Annual ACM Symposium on Applied Computing, SAC 2018, pp. 1366–1373. ACM, New York (2018). https://doi.org/10.1145/3167132.3167279
  12. 12.
    Ricci, F., Rokach, L., Shapira, B. (eds.): Recommender Systems Handbook, 2nd edn. Springer, New York (2015).  https://doi.org/10.1007/978-1-4899-7637-6CrossRefzbMATHGoogle Scholar
  13. 13.
    Rosenschein, J.S., Zlotkin, G.: Rules of Encounter: Designing Conventions for Automated Negotiation among Computers. MIT Press, Cambridge (1994)Google Scholar
  14. 14.
    Rossi, S., Di Napoli, C., Barile, F., Liguori, L.: A multi-agent system for group decision support based on conflict resolution styles. In: Aydoğan, R., Baarslag, T., Gerding, E., Jonker, C.M., Julian, V., Sanchez-Anguix, V. (eds.) COREDEMA 2016. LNCS (LNAI), vol. 10238, pp. 134–148. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-57285-7_9CrossRefGoogle Scholar
  15. 15.
    Rossi, S., Napoli, C.D., Barile, F., Liguori, L.: Conflict resolution profiles and agent negotiation for group recommendations. In: 17th Workshop “FromObjects to Agents” (WOA 2016) (2016)Google Scholar
  16. 16.
    Villavicencio, C., Schiaffino, S., Diaz-Pace, J.A., Monteserin, A., Demazeau, Y., Adam, C.: A MAS approach for group recommendation based on negotiation techniques. In: Demazeau, Y., Ito, T., Bajo, J., Escalona, M.J. (eds.) PAAMS 2016. LNCS (LNAI), vol. 9662, pp. 219–231. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-39324-7_19CrossRefGoogle Scholar
  17. 17.
    Zeuthen, F.: Problems of Monopoly and Economic Warfare. Routledge, Abingdon (1930)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Graduate School of Information Science and EngineeringRitsumeikan UniversityKyotoJapan
  2. 2.College of Information Science and EngineeringRitsumeikan University KusatsuShigaJapan

Personalised recommendations