Advertisement

Sharp Images Detection for Microscope Pollen Slides Observation

  • Aysha KadaikarEmail author
  • Maria Trocan
  • Frédéric Amiel
  • Patricia Conde-Cespedes
  • Benjamin Guinot
  • Roland Sarda Estève
  • Dominique Baisnée
  • Gilles Oliver
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11431)

Abstract

In this paper, a new preprocessing algorithm to qualify images of different pollen grains for further processing is proposed. This algorithm provides a score related to the sharpness of the image and will be used to automatically adjust the focal length of a microscope that magnifies the image. The obtained score has been compared to four quality metrics generally used to estimate the clarity of an image and to a reference made by a human. The results of the simulations show that the proposed algorithm combines better performance with low complexity on the set of images.

Keywords

Microscope slide image acquisition Sharp image detection Fourier transform 

Notes

Acknowledgment

The authors would like to gratefully acknowledge the support of the National Research Agency and the STAE foundation under the auspices of the Saint-Exupery Technological Research Institute without which the present study could not have been completed.

References

  1. 1.
    Pawankar, R., et al.: State of world allergy report 2008: allergy and chronic respiratory diseases. World Allergy Organ. J. 1(1), S4 (2008)CrossRefGoogle Scholar
  2. 2.
    Dykewicz, M.S., Hamilos, D.L.: Rhinitis and sinusitis. J. Allergy Clin. Immunol. 125(2), S103–S115 (2010)CrossRefGoogle Scholar
  3. 3.
    Narvekar, N.D., Karam, L.J.: A no-reference perceptual image sharpness metric based on a cumulative probability of blur detection. In: 2009 International Workshop on Quality of Multimedia Experience. IEEE (2009)Google Scholar
  4. 4.
    Venkatanath, N., Praneeth, D., Chandrasekhar, B.M., Channappayya, S.S., Medasani, S.S.: Blind image quality evaluation using perception based features. In: Proceedings of the 21st National Conference on Communications (NCC). IEEE, Piscataway (2015)Google Scholar
  5. 5.
    Mittal, A., Moorthy, A.K., Bovik, A.C.: Referenceless image spatial quality evaluation engine. In: Presentation at the 45th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA (2011)Google Scholar
  6. 6.
    Mittal, A., Moorthy, A.K., Bovik, A.C.: No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process. 21(12), 4695–4708 (2012)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Mittal, A., Soundararajan, R., Bovik, A.C.: Making a completely blind image quality analyzer. IEEE Signal Process. Lett. 22(3), 209–212 (2013)CrossRefGoogle Scholar
  8. 8.
    Image processing toolbox description page (2018). https://www.mathworks.com/help/images/index.html Accessed 20 Dec 2018

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Aysha Kadaikar
    • 1
    • 2
    Email author
  • Maria Trocan
    • 2
  • Frédéric Amiel
    • 2
  • Patricia Conde-Cespedes
    • 2
  • Benjamin Guinot
    • 1
  • Roland Sarda Estève
    • 3
  • Dominique Baisnée
    • 3
  • Gilles Oliver
    • 4
  1. 1.Laboratoire d’AérologieToulouseFrance
  2. 2.Institut Supérieur d’Electronique de ParisParisFrance
  3. 3.Laboratoire des Sciences du Climat et de l’EnvironnementGif-sur-YvetteFrance
  4. 4.Réseau National de Surveillance AérobiologiqueBrussieuFrance

Personalised recommendations