Advertisement

Simultaneous Localization and Segmentation of Fish Objects Using Multi-task CNN and Dense CRF

  • Alfonso B. Labao
  • Prospero C. NavalJr.Email author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11431)

Abstract

We propose a deep learning tool to localize fish objects in benthic underwater videos on a frame by frame basis. The deep network predicts fish object spatial coordinates and simultaneously segments the corresponding pixels of each fish object. The network follows a state of the art inception resnet v2 architecture that automatically generates informative features for object localization and mask segmentation tasks. Predicted masks are passed to dense Conditional Random Field (CRF) post-processing for contour and shape refinement. Unlike prior methods that rely on motion information to segment fish objects, our proposed method only requires RGB video frames to predict both box coordinates and object pixel masks. Independence from motion information makes our proposed model more robust to camera movements or jitters, and makes it more applicable to process underwater videos taken from unmanned water vehicles. We test the model in actual benthic underwater video frames taken from ten different sites. The proposed tool can segment fish objects despite wide camera movements, blurred underwater resolutions, and is robust to a wide variety of environments and fish species shapes.

Keyword

Fish object localization 

References

  1. 1.
    Bradski, G., Kaehler, A.: Learning OpenCV: Computer Vision with the OpenCV Library. O’Reilly Media Inc., Sebastopol (2008)Google Scholar
  2. 2.
    Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. arXiv preprint arXiv:1606.00915 (2016)
  3. 3.
    Dai, J., He, K., Sun, J.: Instance-aware semantic segmentation via multi-task network cascades. arXiv preprint arXiv:1512.04412 (2015)
  4. 4.
    Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The Pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)CrossRefGoogle Scholar
  5. 5.
    Fier, R., Albu, A.B., Hoeberechts, M.: Automatic fish counting system for noisy deep-sea videos. In: Oceans-St. John’s 2014, pp. 1–6. IEEE (2014)Google Scholar
  6. 6.
    Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)Google Scholar
  7. 7.
    He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2980–2988. IEEE (2017)Google Scholar
  8. 8.
    Joly, A., et al.: Lifeclef: multimedia life species identification. In: EMR@ ICMR, pp. 7–13 (2014)Google Scholar
  9. 9.
    Koltun, V.: Efficient inference in fully connected CRFs with Gaussian edge potentials. Adv. Neural Inf. Process. Syst. 2(3), 4 (2011)Google Scholar
  10. 10.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)Google Scholar
  11. 11.
    Kumar Rai, R., Gour, P., Singh, B.: Underwater image segmentation using clahe enhancement and thresholding. Int. J. Emerg. Technol. Adv. Eng. 2(1), 118–123 (2012)Google Scholar
  12. 12.
    Labao, A.B., Naval, P.C.: Weakly-labelled semantic segmentation of fish objects in underwater videos using a deep residual network. In: Nguyen, N.T., Tojo, S., Nguyen, L.M., Trawiński, B. (eds.) ACIIDS 2017. LNCS (LNAI), vol. 10192, pp. 255–265. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-54430-4_25CrossRefGoogle Scholar
  13. 13.
    Li, X., Shang, M., Hao, J., Yang, Z.: Accelerating fish detection and recognition by sharing CNNs with objectness learning. In: OCEANS 2016-Shanghai, pp. 1–5. IEEE (2016)Google Scholar
  14. 14.
    Li, X., Shang, M., Qin, H., Chen, L.: Fast accurate fish detection and recognition of underwater images with fast R-CNN. In: OCEANS 2015-MTS/IEEE Washington, pp. 1–5. IEEE (2015)Google Scholar
  15. 15.
    Lin, G., Shen, C., van den Hengel, A., Reid, I.: Efficient piecewise training of deep structured models for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3194–3203 (2016)Google Scholar
  16. 16.
    Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)Google Scholar
  17. 17.
    Negahdaripour, S., Yu, C.H.: On shape and range recovery from image shading for underwater applications. Underwater Robot. Veh.: Des. Control 221–250 (1995)Google Scholar
  18. 18.
    Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)Google Scholar
  19. 19.
    Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: Overfeat: Integrated recognition, localization and detection using convolutional networks. arXiv preprint arXiv:1312.6229 (2013)
  21. 21.
    Spampinato, C., Chen-Burger, Y.H., Nadarajan, G., Fisher, R.B.: Detecting, tracking and counting fish in low quality unconstrained underwater videos. VISAPP 2(2008), 514–519 (2008)Google Scholar
  22. 22.
    Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.: Inception-v4, inception-resnet and the impact of residual connections on learning. arXiv preprint arXiv:1602.07261 (2016)
  23. 23.
    Twilley, N., Graber, C.: Gastropod: How many fish are in the sea? counting fish is a daunting but essential task in protecting aquatic ecosystems-and now artificial intelligence, autonomous submarines, and drones can help. https://www.theatlantic.com/science/archive/2016/10/how-many-fish-are-in-the-sea/502937/

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Computer Vision and Machine Intelligence Group, Department of Computer Science, College of EngineeringUniversity of the Philippines, DilimanQuezon CityPhilippines

Personalised recommendations