Advertisement

Towards Knowledge Formalization and Sharing in a Cognitive Vision Platform for Hazard Control (CVP-HC)

  • Caterine Silva de OliveiraEmail author
  • Cesar SaninEmail author
  • Edward SzczerbickiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11431)

Abstract

Hazards can be found in all work environments and may cause injuries, illnesses, or fatalities. In this context, controlling of risks and safety management has become indispensable to guarantee the laborers wellbeing in worksites. Aiming to achieve a systematic, explicit and comprehensive system for managing safety risks, a Cognitive Vision Platform for Hazard Control (CVP-HC) has been proposed. This platform is designed to automatically detect unsafe activities and improve the decision making process when they occur in different workplace scenarios, while attending specific safety requirements of organizations by adapting its behavior accordingly. To meet generality, the CVP-HC utilizes the Set of Experience Knowledge Structure (SOEKS) and Decisional DNA (DDNA) to administrate knowledge. To ensure scalability and adaptability, a loosely coupled communication model, the publishing/subscribe interaction scheme is used over the Robot Operating System (ROS) framework.

Keywords

Cognitive vision SOEKS DDNA ROS framework Hazard control 

References

  1. 1.
    Safe Work Australia: Australian Work Health and Safety Strategy 2012–2022. Creative Commons (2012)Google Scholar
  2. 2.
    Safetycare Australia: Recognition, evaluation and control of hazards, VIC (2015)Google Scholar
  3. 3.
    Lund, J., Aarø, L.E.: Accident prevention. Presentation of a model placing emphasis on human, structural and cultural factors. Saf. Sci. 42(4), 271–324 (2004)CrossRefGoogle Scholar
  4. 4.
    Han, S., Lee, S.: A vision-based motion capture and recognition framework for behavior-based safety management. Autom. Constr. 35, 131–141 (2013)CrossRefGoogle Scholar
  5. 5.
    Mosberger, R., Andreasson, H., Lilienthal, A.J.: Multi-human tracking using high-visibility clothing for industrial safety. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2013), pp. 638–644 (2013)Google Scholar
  6. 6.
    Zambrano, A., Toro, C., Nieto, M., Sotaquirá, R., Sanín, C., Szczerbicki, E.: Video semantic analysis framework based on run-time production rules – towards cognitive vision. J. Univ. Comput. Sci. 21(6), 856–870 (2015)MathSciNetGoogle Scholar
  7. 7.
    DeJoy, D.M.: Behavior change versus culture change: divergent approaches to managing workplace safety. Saf. Sci. 43(2), 105–129 (2005)CrossRefGoogle Scholar
  8. 8.
    de Oliveira, C.S., Sanin, C., Szczerbicki, E.: Cognition and decisional experience to support safety management in workplaces. In: Świątek, J., Borzemski, L., Wilimowska, Z. (eds.) ISAT 2018. AISC, vol. 853, pp. 266–275. Springer, Cham (2019).  https://doi.org/10.1007/978-3-319-99996-8_24CrossRefGoogle Scholar
  9. 9.
    Sanin, C., Szczerbicki, E.: Set of experience: a knowledge structure for formal decision events. Found. Control Manage. Sci. 3, 95–113 (2005)Google Scholar
  10. 10.
    Sanin, C., Szczerbicki, E.: Decisional DNA and the smart knowledge management system: a process of transforming information into knowledge. In: Gunasekaran, A. (ed.) Techniques and Tool for the Design and Implementation of Enterprise Information Systems, pp. 149–175. IGI Global, New York (2008)Google Scholar
  11. 11.
    Quigley, M., et al.: ROS: an open-source Robot Operating System. In: ICRA Workshop on Open Source Software, vol. 3, no. 3.2, p. 5, May 2009Google Scholar
  12. 12.
    Banavar, G., Chandra, T., Mukherjee, B., Nagarajarao, J., Strom, R. E., Sturman, D.C.: An efficient multicast protocol for content-based publish-subscribe systems. In: Proceedings of the 19th IEEE International Conference on Distributed Computing Systems, pp. 262–272. IEEE (1999)Google Scholar
  13. 13.
    Vernon, D.: The space of cognitive vision. In: Christensen, H.I., Nagel, H.-H. (eds.) Cognitive Vision Systems. LNCS, vol. 3948, pp. 7–24. Springer, Heidelberg (2006).  https://doi.org/10.1007/11414353_2CrossRefGoogle Scholar
  14. 14.
    Brézillon, P., Pomerol, J.C.: Contextual knowledge and proceduralized context. In: Proceedings of the AAAI-99 Workshop on Modeling Context in AI Applications, Orlando, Florida, USA, July. AAAI Technical Report (1999)Google Scholar
  15. 15.
    Berthe, D., Dowson, D., Godet, M., Taylor, C.M. (eds.): Tribological Design of Machine Elements, vol. 14. Elsevier, Amsterdam (1989)Google Scholar
  16. 16.
    Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: OSDI, vol. 16, pp. 265–283, November 2016Google Scholar
  17. 17.
    M8: A Proven LiDAR Powerhouse. 2016 Quanergy Systems, Inc. (2016). https://quanergy.com/m8/
  18. 18.
    Moore, R.C.: A formal theory of knowledge and action. In: Allen, J.F., Hendler, J., Tate, A. (eds.) Readings in Planning, pp. 480–519. Morgan Kaufmann Publishers, San Mateo (1990)Google Scholar
  19. 19.
    Morgenstern, L.: A first-order theory of planning, knowledge, and action. In: Halpern, J.Y. (ed.) Proceedings of the 1986 Conference on Theoretical Aspects of Reasoning About Knowledge, pp. 99–114. Morgan Kaufmann Publishers, San Mateo (1986)Google Scholar
  20. 20.
    Morgenstern, L.: Knowledge preconditions for actions and plans. In: Proceedings of the Tenth International Joint Conference on Artificial Intelligence (IJCAI 1987), Milan, Italy, pp. 867–874 (1987)Google Scholar
  21. 21.
    Sanin, C., Szczerbicki, E.: Experience-based knowledge representation: SOEKS. Cybern. Syst. Int. J. 40(2), 99–122 (2009)CrossRefGoogle Scholar
  22. 22.
    Blakeslee, S.: Lost on Earth: Wealth of Data Found in Space. New York Times, 20 March 1990. C1Google Scholar
  23. 23.
    Corti, L., Backhouse, G.: Acquiring qualitative data for secondary analysis. In: Forum: Qualitative Social Research, vol. 6, no. 2 (2005)Google Scholar
  24. 24.
    Humphrey, C.: Preserving research data: a time for action. In: Proceedings of the Preservation of Electronic Records: New Knowledge and Decision-making: Postprints of a Conference – Symposium 2003, pp. 83–89. Canadian Conservation Institute, Ottawa (2004)Google Scholar
  25. 25.
    Johnson, P.: Who you gonna call? Technicalities 10(4), 6–8 (1990)Google Scholar
  26. 26.
    Sanin, C., et al.: Decisional DNA: a multi-technology shareable knowledge structure for decisional experience. Neurocomputing 88, 42–53 (2012)CrossRefGoogle Scholar
  27. 27.
    ROS Core Components (2016). http://www.ros.org/core-components/
  28. 28.
    Birman, K.P.: The process group approach to reliable distributed computing. Commun. ACM 36(12), 36–53 (1993)CrossRefGoogle Scholar
  29. 29.
    Mishra, S., Peterson, L.L., Schlichting, R.D.: Consul: a communication substrate for fault-tolerant distributed programs. Department of Computer Science, The University of Arizona, TR 91-32, November 1991Google Scholar
  30. 30.
    Oki, B., Pfluegl, M., Siegel, A., Skeen, D.: The information bus - an architecture for extensible distributed systems. In: Operating Systems Review, vol. 27, no. 5, pp. 58–68, December 1993Google Scholar
  31. 31.
    Powell, D. (Guest ed.): Group communication. Commun. ACM, vol. 39, no. 4, April 1996Google Scholar
  32. 32.
    Skeen, D.: Vitria’s Publish-Subscribe Architecture: Publish-Subscribe Overview (1998). http://www.vitria.com/
  33. 33.
    ROS Concepts. AaronMR (2014). http://wiki.ros.org/ROS/Concepts
  34. 34.
    Brézillon, P., Pomerol, J.C.: Contextual knowledge and proceduralized context. In: Proceedings of the AAAI-99 Workshop on Modeling Context in AI Applications, Orlando, Florida, USA, July. AAAI Technical Report (1999)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.The University of NewcastleNewcastleAustralia
  2. 2.Gdansk University of TechnologyGdanskPoland

Personalised recommendations