Advertisement

Matching Topological Structures for Handwritten Character Recognition

  • Daw-Ran Liou
  • Yang-En Chen
  • Cheng-Yuan LiouEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11431)

Abstract

This work presents a locking and deforming process to accomplish the recognition. The best matched features of the template are locked to their target features of the unknown pattern. The whole template is then deformed and calibrated according to these features. Improved similarity score can be obtained from the deformed template. This work illustrates this process and its operations. This process indirectly overcomes difficult distortion problems.

Keywords

Pattern recognition Image recognition Image classification Image restoration Robot vision Handwritten character recognition 

References

  1. 1.
    Blasdel, G.G., Salama, G.: Voltage-sensitive dyes reveal a modular organization in monkey striate cortex. Nature 321, 579–585 (1986)CrossRefGoogle Scholar
  2. 2.
    Carpenter, G.A., Grossberg, S.: ART 2: self-organization of stable category recognition codes for analog input patterns. Appl. Opt. 26(23), 4919–4930 (1987)CrossRefGoogle Scholar
  3. 3.
    Hubel, D.H., Wiesel, T.N.: Brain mechanisms of vision. In: Rock, I. (ed) The Perceptual World: Readings from Scientific American Magazine, pp. 3–24 (1990)Google Scholar
  4. 4.
    Kohonen, T.: Self-Organization and Associative Memory, 3rd edn. Springer, Berlin (1989).  https://doi.org/10.1007/978-3-642-88163-3CrossRefzbMATHGoogle Scholar
  5. 5.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)Google Scholar
  6. 6.
    Liou, D.-R., Lin, C.-C., Liou, C.-Y.: Setting shape rules for handprinted character recognition. In: Pan, J.-S., Chen, S.-M., Nguyen, N.T. (eds.) ACIIDS 2012. LNCS (LNAI), vol. 7197, pp. 245–252. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-28490-8_26CrossRefGoogle Scholar
  7. 7.
    Liou, C.-Y., Shih, H.-Y., Liou, D.-R.: Finite geometrical relations loading in Hopfield model. J. Theor. Appl. Comput. Sci. 6(4), 59–76 (2012)Google Scholar
  8. 8.
    Liou, C.-Y., Tai, W.-P.: Conformal self-organization for continuity on a feature map. Neural Netw. 12, 893–905 (1999)CrossRefGoogle Scholar
  9. 9.
    Liou, C.-Y., Yang, H.-C.: Spatial topology distance for handprinted character recognition. In: Gielen, S., Kappen, B. (eds.) ICANN 1993, pp. 918–921. Springer, London (1993).  https://doi.org/10.1007/978-1-4471-2063-6_266CrossRefGoogle Scholar
  10. 10.
    Liou, C.-Y., Yang, H.C.: Handprinted character recognition based on spatial topology distance measurement. IEEE Trans. Pattern Anal. Mach. Intell. 18(9), 941–945 (1996)CrossRefGoogle Scholar
  11. 11.
    Liou, C.Y., Yang, H.C.: Selective feature-to-feature adhesion for recognition of cursive handprinted characters. IEEE Trans. Pattern Anal. Mach. Intell. 21(2), 184–191 (1999)CrossRefGoogle Scholar
  12. 12.
    Nasrabadi, N.M., Li, W., Choo, C.Y.: Object recognition by a Hopfield neural network. In: ICCV, pp. 325–328 (1990)Google Scholar
  13. 13.
    Suganthan, P.N., Teoh, E.K., Mital, D.P.: Pattern recognition by homomorphic graph matching using Hopfield neural networks. Image Vis. Comput. 13(1), 45–60 (1995)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Computer Science and Information EngineeringNational Taiwan UniversityTaipeiTaiwan

Personalised recommendations