Multidimensional Permutation Entropy for Constrained Motif Discovery

  • Yomna RayanEmail author
  • Yasser MohammadEmail author
  • Samia A. Ali
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11431)


Constrained motif discovery was proposed as an unsupervised method for efficiently discovering interesting recurrent patterns in time-series. The de-facto standard way to calculate the required constraint on motif occurrence locations is change point discovery. This paper proposes the use of time-series complexity for finding the constraint and shows that the proposed approach can achieve higher accuracy in localizing motif occurrences and approximately the same accuracy for discovering different motifs at three times the speed of change point discovery. Moreover, the paper proposes a new extension of the permutation entropy for estimating time-series complexity to multi-dimensional time-series and shows that the proposed extension outperforms the state-of-the-art multi-dimensional permutation entropy approach both in speed and usability as a motif discovery constraint.


  1. 1.
    Bandt, C., Pompe, B.: Permutation entropy: a natural complexity measure for time series. Phys. Rev. Lett. 88(17), 174102 (2002). Scholar
  2. 2.
    Catalano, J., Armstrong, T., Oates, T.: Discovering patterns in real-valued time series. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 462–469. Springer, Heidelberg (2006). Scholar
  3. 3.
    Chavarriaga, R., et al.: The opportunity challenge: a benchmark database for on-body sensor-based activity recognition. Pattern Recogn. Lett. 34(15), 2033–2042 (2013). Scholar
  4. 4.
    Chiu, B., Keogh, E., Lonardi, S.: Probabilistic discovery of time series motifs. In: 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2003, pp. 493–498. ACM, New York (2003).
  5. 5.
    He, S., Sun, K., Wang, H.: Multivariate permutation entropy and its application for complexity analysis of chaotic systems. Phys. A Stat. Mech. Appl. 461, 812–823 (2016)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Lin, J., Keogh, E., Wei, L., Lonardi, S.: Experiencing sax: a novel symbolic representation of time series. Data Min. Knowl. Disc. 15(2), 107–144 (2007)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Mohammad, Y., Nishida, T.: Learning interaction protocols using augmented Baysian networks applied to guided navigation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2010, pp. 4119–4126. IEEE, October 2010.
  8. 8.
    Mohammad, Y., Ohmoto, Y., Nishida, T.: G-SteX: greedy stem extension for free-length constrained motif discovery. In: Jiang, H., Ding, W., Ali, M., Wu, X. (eds.) IEA/AIE 2012. LNCS (LNAI), vol. 7345, pp. 417–426. Springer, Heidelberg (2012). Scholar
  9. 9.
    Mohammad, Y., Nishida, T.: Constrained motif discovery in time series. New Gener. Comput. 27(4), 319–346 (2009)CrossRefGoogle Scholar
  10. 10.
    Mohammad, Y., Nishida, T.: On comparing SSA-based change point discovery algorithms. In: IEEE/SICE International Symposium on System Integration, SII 2011, pp. 938–945 (2011)Google Scholar
  11. 11.
    Mohammad, Y., Nishida, T.: Exact discovery of length-range motifs. In: Nguyen, N.T., Attachoo, B., Trawiński, B., Somboonviwat, K. (eds.) ACIIDS 2014. LNCS (LNAI), vol. 8398, pp. 23–32. Springer, Cham (2014). Scholar
  12. 12.
    Mohammad, Y., Nishida, T.: Scale invariant multi-length motif discovery. In: Ali, M., Pan, J.-S., Chen, S.-M., Horng, M.-F. (eds.) IEA/AIE 2014. LNCS (LNAI), vol. 8482, pp. 417–426. Springer, Cham (2014). Scholar
  13. 13.
    Mohammad, Y., Nishida, T.: Exact multi-length scale and mean invariant motif discovery. Appl. Intell. 44, 1–18 (2015)Google Scholar
  14. 14.
    Mohammad, Y., Nishida, T.: Shift density estimation based approximately recurring motif discovery. Appl. Intell. 42(1), 112–134 (2015)CrossRefGoogle Scholar
  15. 15.
    Mohammad, Y., Nishida, T.: \(MC^2\): an integrated toolbox for change, causality and motif discovery. In: Fujita, H., Ali, M., Selamat, A., Sasaki, J., Kurematsu, M. (eds.) IEA/AIE 2016. LNCS (LNAI), vol. 9799, pp. 128–141. Springer, Cham (2016). Scholar
  16. 16.
    Mohammad, Y., Nishida, T.: Unsupervised discovery of basic human actions from activity recording datasets. In: IEEE/SICE International Symposium on System Integration, SII 2012, pp. 402–409. IEEE (2012)Google Scholar
  17. 17.
    Mohammad, Y., Ohmoto, Y., Nishida, T.: CPMD: a matlab toolbox for change point and constrained motif discovery. In: Jiang, H., Ding, W., Ali, M., Wu, X. (eds.) IEA/AIE 2012. LNCS (LNAI), vol. 7345, pp. 114–123. Springer, Heidelberg (2012). Scholar
  18. 18.
    Morabito, F.C., Labate, D., Foresta, F.L., Bramanti, A., Morabito, G., Palamara, I.: Multivariate multi-scale permutation entropy for complexity analysis of Alzheimer’s disease EEG. Entropy 14(7), 1186–1202 (2012)CrossRefGoogle Scholar
  19. 19.
    Mueen, A.: Enumeration of time series motifs of all lengths. In: 2013 IEEE 13th International Conference on Data Mining (ICDM). IEEE (2013)Google Scholar
  20. 20.
    Mueen, A., Keogh, E., Zhu, Q., Cash, S., Westover, B.: Exact discovery of time series motifs. In: SIAM International Conference on Data Mining, SDM 2009, pp. 473–484 (2009)Google Scholar
  21. 21.
    Riedl, M., Müller, A., Wessel, N.: Practical considerations of permutation entropy. Eur. Phys. J. Spec. Top. 222(2), 249–262 (2013)CrossRefGoogle Scholar
  22. 22.
    Tanaka, Y., Iwamoto, K., Uehara, K.: Discovery of time-series motif from multi-dimensional data based on MDL principle. Mach. Learn. 58(2/3), 269–300 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Assiut UniversityAsyutEgypt
  2. 2.AISTTokyoJapan

Personalised recommendations