Skip to main content

CpG Islands Methylation Alterations in Cancer: Functionally Intriguing Security Locks, Useful Early Tumor Biomarkers

  • Chapter
  • First Online:
The DNA, RNA, and Histone Methylomes

Part of the book series: RNA Technologies ((RNATECHN))

  • 988 Accesses

Abstract

DNA methylation is an epigenetic modification consisting in the addition of a methyl group to the position 5 of a cytosine in a CpG context. In normal mammalian cells, while CpG islands, mostly concentrated at promoter regions, are protected from DNA methylation, intergenic and repetitive regions are normally hypermethylated. In cancer cells, a massive change in the global methylation pattern occurs. Intergenic and repetitive regions of the genome become hypomethylated leading to the reactivation of transposable elements and genomic instability. In contrast, a focal hypermethylation of CpG islands at promoter regions occurs and it is normally associated to gene expression downregulation. Thus, aberrant DNA methylation is one of the most striking features of cancer cells and several studies have demonstrated that cancer-specific methylation patterns exist. For this reason, DNA methylation represents an extremely useful biomarker for several applications, including cancer risk definition, prediction of clinical outcomes, treatment response and cancer relapse. Finally, the association between DNA methylation and gene expression, although notoriously recognized, is not yet fully known, and the study of DNA methylation alterations in cancer and their consequences can help elucidate the mechanisms underlying this relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Akiyama Y, Watkins N, Suzuki H et al (2003) GATA-4 and GATA-5 transcription factor genes and potential downstream antitumor target genes are epigenetically silenced in colorectal and gastric cancer. Mol Cell Biol 23:8429–8439

    Article  CAS  Google Scholar 

  • Antonelli M, Fadda A, Loi E et al (2018) Integrated DNA methylation analysis identifies topographical and tumoral biomarkers in pilocytic astrocytomas. Oncotarget 9:13807–13821

    Article  Google Scholar 

  • Barault L, Amatu A, Siravegna G et al (2018) Discovery of methylated circulating DNA biomarkers for comprehensive non-invasive monitoring of treatment response in metastatic colorectal cancer. Gut 67:1995–2005

    Article  CAS  Google Scholar 

  • Baylin SB (2005) DNA methylation and gene silencing in cancer. Nat Clin Pract Oncol 2:S4–S11

    Article  CAS  Google Scholar 

  • Baylin SB, Ohm JE (2006) Epigenetic gene silencing in cancer – a mechanism for early oncogenic pathway addiction? Nat Rev Cancer 6:107–116

    Article  CAS  Google Scholar 

  • Berdasco M, Esteller M (2010) Aberrant epigenetic landscape in cancer: how cellular identity goes awry. Dev Cell 19:698–711

    Article  CAS  Google Scholar 

  • Bindra RS, Glazer PM (2007) Co-repression of mismatch repair gene expression by hypoxia in cancer cells: role of the Myc/Max network. Cancer Lett 252:93–103

    Article  CAS  Google Scholar 

  • Bindra RS, Gibson SL, Meng A et al (2005) Hypoxia-induced down-regulation of BRCA1 expression by E2Fs. Cancer Res 65:11597–11604

    Article  CAS  Google Scholar 

  • Church TR, Wandell M, Lofton-Day C et al (2014) Prospective evaluation of methylated SEPT9 in plasma for detection of asymptomatic colorectal cancer. Gut 63:317–325

    Article  CAS  Google Scholar 

  • Eden A, Gaudet F, Waghmare A et al (2003) Chromosomal instability and tumors promoted by DNA hypomethylation. Science 300:455–455

    Article  CAS  Google Scholar 

  • Fadda A, Gentilini D, Moi L et al (2018) Colorectal cancer early methylation alterations affect the crosstalk between cell and surrounding environment, tracing a biomarker signature specific for this tumor. Int J Cancer 143:907–920

    Article  CAS  Google Scholar 

  • Feigin ME (2013) Harnessing the genome for characterization of G-protein coupled receptors in cancer pathogenesis. FEBS J 280:4729–4738

    Article  CAS  Google Scholar 

  • Gal-Yam EN, Egger G, Iniguez L et al (2008) Frequent switching of Polycomb repressive marks and DNA hypermethylation in the PC3 prostate cancer cell line. Proc Natl Acad Sci U S A 105:12979–12984

    Article  Google Scholar 

  • Greger V, Passarge E, Höpping W et al (1989) Epigenetic changes may contribute to the formation and spontaneous regression of retinoblastoma. Hum Genet 83:155–158

    Article  CAS  Google Scholar 

  • Hinoue T, Weisenberger DJ, Lange CPE et al (2012) Genome-scale analysis of aberrant DNA methylation in colorectal cancer. Genome Res 22:271–282

    Article  CAS  Google Scholar 

  • Howard G, Eiges R, Gaudet F et al (2008) Activation and transposition of endogenous retroviral elements in hypomethylation induced tumors in mice. Oncogene 27:404–408

    Article  CAS  Google Scholar 

  • Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3:415–428

    Article  CAS  Google Scholar 

  • Jones PA, Baylin SB (2007) The epigenomics of cancer. Cell 128:683–692

    Article  CAS  Google Scholar 

  • Keshet I, Schlesinger Y, Farkash S et al (2006) Evidence for an instructive mechanism of de novo methylation in cancer cells. Nat Genet 38:149–153

    Article  CAS  Google Scholar 

  • Kinzler KW, Vogelstein B (1996) Lessons from hereditary colorectal cancer. Cell 87:159–170

    Article  CAS  Google Scholar 

  • Klett H, Balavarca Y, Toth R et al (2018) Robust prediction of gene regulation in colorectal cancer tissues from DNA methylation profiles. Epigenetics 13:386–397

    Article  Google Scholar 

  • Krishnamachary B, Zagzag D, Nagasawa H et al (2006) Hypoxia-inducible factor-1-dependent repression of E-cadherin in von Hippel-Lindau tumor suppressor–null renal cell carcinoma mediated by TCF3, ZFHX1A, and ZFHX1B. Cancer Res 66:2725–2731

    Article  CAS  Google Scholar 

  • Lam K, Pan K, Linnekamp JF et al (2016) DNA methylation based biomarkers in colorectal cancer: a systematic review. Biochim Biophys Acta Rev Cancer 1866:106–120

    Article  CAS  Google Scholar 

  • Lee SH, Kim J, Kim W-H et al (2009) Hypoxic silencing of tumor suppressor RUNX3 by histone modification in gastric cancer cells. Oncogene 28:184–194

    Article  CAS  Google Scholar 

  • Levanon D, Bernstein Y, Negreanu V et al (2011) Absence of Runx3 expression in normal gastrointestinal epithelium calls into question its tumour suppressor function. EMBO Mol Med 3:593–604

    Article  CAS  Google Scholar 

  • Long C, Yin B, Lu Q et al (2007) Promoter hypermethylation of the RUNX3 gene in esophageal squamous cell carcinoma. Cancer Investig 25:685–690

    Article  CAS  Google Scholar 

  • Moarii M, Boeva V, Vert J-P et al (2015) Changes in correlation between promoter methylation and gene expression in cancer. BMC Genomics 16:873

    Article  Google Scholar 

  • Ohm JE, McGarvey KM, Yu X et al (2007) A stem cell–like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat Genet 39:237–242

    Article  CAS  Google Scholar 

  • Oyer JA, Chu A, Brar S et al (2009) Aberrant epigenetic silencing is triggered by a transient reduction in gene expression. PLoS One 4:e4832

    Article  Google Scholar 

  • Phipps AI, Limburg PJ, Baron JA et al (2015) Association between molecular subtypes of colorectal cancer and patient survival. Gastroenterology 148:77–87.e2

    Article  CAS  Google Scholar 

  • Rauch T, Li H, Wu X et al (2006) MIRA-assisted microarray analysis, a new technology for the determination of DNA methylation patterns, identifies frequent methylation of homeodomain-containing genes in lung cancer cells. Cancer Res 66:7939–7947

    Article  CAS  Google Scholar 

  • Rauch T, Wang Z, Zhang X et al (2007) Homeobox gene methylation in lung cancer studied by genome-wide analysis with a microarray-based methylated CpG island recovery assay. Proc Natl Acad Sci U S A 104:5527–5532

    Article  CAS  Google Scholar 

  • Rodriguez J, Frigola J, Vendrell E et al (2006) Chromosomal instability correlates with genome-wide DNA demethylation in human primary colorectal cancers. Cancer Res 66:8462–9468

    Article  CAS  Google Scholar 

  • Schlesinger Y, Straussman R, Keshet I et al (2007) Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nat Genet 39:232–236

    Article  CAS  Google Scholar 

  • Sharma S, Kelly TK, Jones PA (2010) Epigenetics in cancer. Carcinogenesis 31:27–36

    Article  CAS  Google Scholar 

  • Sproul D, Nestor C, Culley J et al (2011) Transcriptionally repressed genes become aberrantly methylated and distinguish tumors of different lineages in breast cancer. Proc Natl Acad Sci U S A 108:4364–4369

    Article  CAS  Google Scholar 

  • Sproul D, Kitchen RR, Nestor CE et al (2012) Tissue of origin determines cancer-associated CpG island promoter hypermethylation patterns. Genome Biol 13:R84

    Article  CAS  Google Scholar 

  • Timp W, Feinberg AP (2013) Cancer as a dysregulated epigenome allowing cellular growth advantage at the expense of the host. Nat Rev Cancer 13:497–510

    Article  CAS  Google Scholar 

  • Viré E, Brenner C, Deplus R et al (2006) The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439:871–874

    Article  Google Scholar 

  • Widschwendter M, Fiegl H, Egle D et al (2007) Epigenetic stem cell signature in cancer. Nat Genet 39:157–158

    Article  CAS  Google Scholar 

  • Wong Doo N, Makalic E, Joo JE et al (2016) Global measures of peripheral blood-derived DNA methylation as a risk factor in the development of mature B-cell neoplasms. Epigenomics 8:55–66

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrizia Zavattari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Loi, E., Zavattari, P. (2019). CpG Islands Methylation Alterations in Cancer: Functionally Intriguing Security Locks, Useful Early Tumor Biomarkers. In: Jurga, S., Barciszewski, J. (eds) The DNA, RNA, and Histone Methylomes. RNA Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-14792-1_3

Download citation

Publish with us

Policies and ethics