Asymmetric Dimethylation on Arginine (ADMA) of Histones in Development, Differentiation and Disease

  • Amit K. Behera
  • Tapas K. KunduEmail author
Part of the RNA Technologies book series (RNATECHN)


Among myriads of histone modifications known today, asymmetric dimethylation of arginines (ADMA) have been found to have important implications in transcriptional regulation of gene expression. These modifications influence organismal development, regulate cellular differentiation of multiple lineages and modulate pathogenesis of various disease forms such as cancer, metabolic disorders and drug addiction. In this chapter, we discuss roles of ADMA of histones mediated by different type I PRMTs in above mentioned physiological contexts and shed light on prospective therapeutic developments.


Asymmetric dimethylation on arginine (ADMA) PRMTs Histones Transcription Development Cellular differentiation 



Asymmetric dimethyl arginine


Arginine methyltransferase inhibitor


Acute Myeloblastic Leukemia


Androgen receptor


Brahma-related gene-1


Ca2+/calmodulin-dependent protein kinase II


Cranial neural crest


Cardiovascular diseases


Dimethylarginine dimethylaminohydrolase


Type I Diabetes mellitus




Epidermal growth factor receptor


Estrogen receptor


Glutathione S-transferase placental form


Hepatocellular carcinoma


Mouse embryonic fibroblast


Myocyte enhancer factor-2C


Monomethyl arginine




Nucleus accumbens


Nitric oxide synthase


Nuclear factor erythroid 2-related factor 2


Neural stem/precursor cells


Oncogene induced senescence


Protein arginine deiminase 4


Polymerase-Associated Factor 1 complex


Peroxisome proliferator activated receptor-gamma


Protein arginine methyltransferase


Prostate specific antigen




Symmetric dimethylarginine


Steroid receptor coactivator


Ying Yang 1



TKK is recipient of JC Bose fellowship from Dept. of Science and technology, Govt. of India (SR/S2/JCB-28/2010). This work was supported by funding from Dept. of Biotechnology, Govt. of India (BT/01/CEIB/10/III/01) and JNCASR, India.

Conflict of Interest

Authors declare that they have no conflict of interest.


  1. Al-Dhaheri M, Wu J, Skliris GP et al (2011) CARM1 is an important determinant of ERα-dependent breast cancer cell differentiation and proliferation in breast cancer cells. Cancer Res 71:2118PubMedPubMedCentralCrossRefGoogle Scholar
  2. Almeida-Rios D, Graça I, Vieira FQ et al (2016) Histone methyltransferase PRMT6 plays an oncogenic role of in prostate cancer. Oncotarget 7:53018–53028PubMedPubMedCentralCrossRefGoogle Scholar
  3. An W, Kim J, Roeder RG (2004) Ordered cooperative functions of PRMT1, p300, and CARM1 in transcriptional activation by p53. Cell 117:735Google Scholar
  4. Baldwin RM, Morettin A, Paris G et al (2012) Alternatively spliced protein arginine methyltransferase 1 isoform PRMT1v2 promotes the survival and invasiveness of breast cancer cells. Cell Cycle 11:4597PubMedPubMedCentralCrossRefGoogle Scholar
  5. Baldwin RM, Bejide M, Trinkle-Mulcahy L et al (2015) Identification of the PRMT1v1 and PRMT1v2 specific interactomes by quantitative mass spectrometry in breast cancer cells. Proteomics 15(13):2187PubMedCrossRefGoogle Scholar
  6. Batut J, Duboé C, Vandel L (2011) The methyltransferases PRMT4/CARM1 and PRMT5 control differentially myogenesis in zebrafish. PLoS One 6:e25427PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bauer UM, Daujat S, Nielsen SJ et al (2002) Methylation at arginine 17 of histone H3 is linked to gene activation. EMBO Rep 3:39–44PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bedford MT, Clarke SG (2009) Protein arginine methylation in mammals: who, what and why. Mol Cell 33:1–13PubMedPubMedCentralCrossRefGoogle Scholar
  9. Behera AK, Bhattacharya A, Vasudevan M et al (2018) p53 mediated regulation of coactivator associated arginine methyltransferase 1 (CARM1) expression is critical for suppression of adipogenesis. FEBS J 285:1730–1744PubMedCrossRefGoogle Scholar
  10. Blythe SA, Cha SW, Tadjuidje E et al (2010) beta-Catenin primes organizer gene expression by recruiting a histone H3 arginine 8 methyltransferase, Prmt2. Dev Cell 19:220PubMedPubMedCentralCrossRefGoogle Scholar
  11. Böger RH (2003) The emerging role of asymmetric dimethylarginine as a novel cardiovascular risk factor. Cardiovasc Res 59:824PubMedCrossRefGoogle Scholar
  12. Bouchard C, Sahu P, Meixner M et al (2018) Genomic location of PRMT6-dependent H3R2 methylation is linked to the transcriptional outcome of associated genes. Cell Rep 24:3339–3352PubMedCrossRefGoogle Scholar
  13. Casadio F, Lu X, Pollock SB et al (2013) H3R42me2a is a histone modification with positive transcriptional effects. Proc Natl Acad Sci USA 110:14894CrossRefGoogle Scholar
  14. Chang B, Chen Y, Zhao Y et al (2007) JMJD6 is a histone arginine demethylase. Science 318:444PubMedCrossRefGoogle Scholar
  15. Chen SL, Loffler KA, Chen D et al (2002) The coactivator-associated arginine methyltransferase is necessary for muscle differentiation: CARM1 coactivates myocyte enhancer factor-2. J Biol Chem 277:4324PubMedCrossRefGoogle Scholar
  16. Chen X, Niroomand F, Liu Z et al (2006) Expression of nitric oxide related enzymes in coronary heart disease. Basic Res Cardiol 101:346PubMedCrossRefGoogle Scholar
  17. Cheng D, Bedford MT (2011) Xenoestrogens regulate the activity of arginine methyltransferases. Chembiochem 12:323PubMedCrossRefGoogle Scholar
  18. Cheng D, Yadav N, King RW, Swanson MS, Weinstein EJ, Bedford MT (2004) Small molecule regulators of protein arginine methyltransferases. J Biol Chem 279(23):23892–23899PubMedCrossRefGoogle Scholar
  19. Cheng D, Valente S, Castellano S et al (2011) Novel 3,5-bis(bromohydroxybenzylidene)piperidin-4-ones as coactivator-associated arginine methyltransferase 1 inhibitors: enzyme selectivity and cellular activity. J Med Chem 54:4928PubMedPubMedCentralCrossRefGoogle Scholar
  20. Cheung N, Fung TK, Zeisig BB et al (2016) Targeting aberrant epigenetic networks mediated by PRMT1 and KDM4C in acute myeloid leukemia. Cancer Cell 29:32–48PubMedPubMedCentralCrossRefGoogle Scholar
  21. Choi JH, Jang AR, Kim DI et al (2018) PRMT1 mediates RANKL-induced osteoclastogenesis and contributes to bone loss in ovariectomized mice. Exp Mol Med 50:111PubMedPubMedCentralCrossRefGoogle Scholar
  22. Chuang CY, Chang CP, Lee YJ et al (2017) PRMT1 expression is elevated in head and neck cancer and inhibition of protein arginine methylation by adenosine dialdehyde or PRMT1 knockdown downregulates proliferation and migration of oral cancer cells. Oncol Rep 38:1115–1123PubMedCrossRefGoogle Scholar
  23. Damez-Werno DM, Sun H, Scobie KN et al (2016) Histone arginine methylation in cocaine action in the nucleus accumbens. Proc Natl Acad Sci USA 113:9623CrossRefGoogle Scholar
  24. Daujat S, Bauer UM, Shah V et al (2002) Crosstalk between CARM1 methylation and CBP acetylation on histone H3. Curr Biol 12:2090PubMedCrossRefGoogle Scholar
  25. Di Lorenzo A, Bedford MT (2011) Histone arginine methylation. FEBS Lett 585:2024PubMedCrossRefGoogle Scholar
  26. Di Lorenzo A, Yang Y, Macaluso M et al (2014) A gain-of-function mouse model identifies PRMT6 as a NF-κB coactivator. Nucleic Acids Res 42:8297PubMedPubMedCentralCrossRefGoogle Scholar
  27. Drew AE, Moradei O, Jacques SL et al (2017) Identification of a CARM1 inhibitor with potent in vitro and in vivo activity in preclinical models of multiple myeloma. Sci Rep 7:17993PubMedPubMedCentralCrossRefGoogle Scholar
  28. Eram MS, Shen Y, Szewczyk M et al (2016) A potent, selective, and cell-active inhibitor of human type I protein arginine methyltransferases. ACS Chem Biol 11:772–781PubMedCrossRefGoogle Scholar
  29. Ersoy B, Eroğlu N, Çetin M et al (2018) Asymmetric dimethylarginine levels and diabetes duration: relationship with measures of subclinical atherosclerosis and cardiac function in children and adolescents with type 1 diabetes. Diab Vasc Dis Res 15:196–203PubMedCrossRefGoogle Scholar
  30. Feng Y, Wang J, Asher S et al (2011) Histone H4 acetylation differentially modulates arginine methylation by an in Cis mechanism. J Biol Chem 286:20323PubMedPubMedCentralCrossRefGoogle Scholar
  31. Frietze S, Lupien M, Silver PA et al (2008) CARM1 regulates estrogen-stimulated breast cancer growth through up-regulation of E2F1. Cancer Res 68:301PubMedCrossRefGoogle Scholar
  32. Fulton MD, Zhang J, He M et al (2017) Intricate effects of α-amino and lysine modifications on arginine methylation of the N-terminal tail of histone H4. Biochemistry 56:3539–3548PubMedPubMedCentralCrossRefGoogle Scholar
  33. Gao Y, Zhao Y, Zhang J et al (2016) The dual function of PRMT1 in modulating epithelial-mesenchymal transition and cellular senescence in breast cancer cells through regulation of ZEB1. Sci Rep 6:19874PubMedPubMedCentralCrossRefGoogle Scholar
  34. Gou Q, He S, Zhou Z (2017) Protein arginine N-methyltransferase 1 promotes the proliferation and metastasis of hepatocellular carcinoma cells. Tumour Biol 39:1010428317691419PubMedCrossRefGoogle Scholar
  35. Gou Y, Li J, Wu J et al (2018a) Prmt1 regulates craniofacial bone formation upstream of Msx1. Mech Dev 152:13–20PubMedCrossRefGoogle Scholar
  36. Gou Y, Li J, Jackson-Weaver O et al (2018b) Protein arginine methyltransferase PRMT1 is essential for palatogenesis. J Dent Res 97:1510–1518PubMedCrossRefGoogle Scholar
  37. Guccione E, Bassi C, Casadio F, Martinato F et al (2007) Methylation of histone H3R2 by PRMT6 and H3K4 by an MLL complex are mutually exclusive. Nature 449:933PubMedPubMedCentralCrossRefGoogle Scholar
  38. Habashy HO, Rakha EA, Ellis IO et al (2013) The oestrogen receptor coactivator CARM1 has an oncogenic effect and is associated with poor prognosis in breast cancer. Breast Cancer Res Treat 140:307PubMedCrossRefGoogle Scholar
  39. Hamey JJ, Separovich RJ, Wilkins MR (2018) MT-MAMS: protein methyltransferase motif analysis by mass spectrometry. J Proteome Res 17:3485–3491PubMedCrossRefGoogle Scholar
  40. Hatanaka Y, Tsusaka T, Shimizu N et al (2017) Histone H3 methylated at arginine 17 is essential for reprogramming the paternal genome in zygotes. Cell Rep 20:2756–2765CrossRefGoogle Scholar
  41. Honda M, Nakashima K, Katada S (2017) PRMT1 regulates astrocytic differentiation of embryonic neural stem/precursor cells. J Neurochem 142(6):901–907. CrossRefPubMedGoogle Scholar
  42. Hong H, Kao C, Jeng MH et al (2004) Aberrant expression of CARM1, a transcriptional coactivator of androgen receptor, in the development of prostate carcinoma and androgen-independent status. Cancer 101:83PubMedCrossRefGoogle Scholar
  43. Huemer M, Simma B, Mayr D et al (2011) Low levels of asymmetric dimethylarginine in children with diabetes mellitus type I compared with healthy children. J Pediatr 158:602–606PubMedCrossRefGoogle Scholar
  44. Hyllus D, Stein C, Schnabel K et al (2007) PRMT6-mediated methylation of R2 in histone H3 antagonizes H3 K4 trimethylation. Genes Dev 21:3369PubMedPubMedCentralCrossRefGoogle Scholar
  45. Jacques SL, Aquino KP, Gureasko J et al (2016) CARM1 preferentially methylates H3R17 over H3R26 through a random kinetic mechanism. Biochemistry 55:1635–1644PubMedCrossRefGoogle Scholar
  46. Jeong HC, Park SJ, Choi JJ et al (2017) PRMT8 controls the pluripotency and mesodermal fate of human embryonic stem cells by enhancing the PI3K/AKT/SOX2 axis. Stem Cells 35:2037–2049PubMedCrossRefGoogle Scholar
  47. Kang I, Okla M, Chung S (2014) Ellagic acid inhibits adipocyte differentiation through coactivator-associated arginine methyltransferase 1-mediated chromatin modification. J Nutr Biochem 25:946PubMedCrossRefGoogle Scholar
  48. Kaniskan HÜ, Szewczyk MM, Yu Z et al (2015) A potent, selective and cell-active allosteric inhibitor of protein arginine methyltransferase 3 (PRMT3). Angew Chem Int Ed Engl 54:5166PubMedPubMedCentralCrossRefGoogle Scholar
  49. Kim YR, Lee BK, Park RY et al (2010) Differential CARM1 expression in prostate and colorectal cancers. BMC Cancer 10:197PubMedPubMedCentralCrossRefGoogle Scholar
  50. Kölbel K, Ihling C, Bellmann-Sickert K et al (2009) Type I arginine methyltransferases PRMT1 and PRMT-3 act distributively. J Biol Chem 284:8274PubMedPubMedCentralCrossRefGoogle Scholar
  51. Lakowski TM, Frankel A (2008) A kinetic study of human protein arginine N-methyltransferase 6 reveals a distributive mechanism. J Biol Chem 283:10015PubMedCrossRefGoogle Scholar
  52. Lakowski TM, Frankel A (2009) Kinetic analysis of human protein arginine N-methyltransferase 2: formation of monomethyl- and asymmetric dimethyl-arginine residues on histone H4. Biochem J 421:253PubMedCrossRefGoogle Scholar
  53. Lausen J (2013) Contributions of the histone arginine methyltransferase PRMT6 to the epigenetic function of RUNX1. Crit Rev Eukaryot Gene Expr 23:265PubMedCrossRefGoogle Scholar
  54. Lee DY, Ianculescu I, Purcell D et al (2007) Surface-scanning mutational analysis of protein arginine methyltransferase 1: roles of specific amino acids in methyltransferase substrate specificity, oligomerization, and coactivator function. Mol Endocrinol 21:1381PubMedPubMedCentralCrossRefGoogle Scholar
  55. Lee YH, Ma H, Tan TZ et al (2012) Protein arginine methyltransferase 6 regulates embryonic stem cell identity. Stem Cells Dev 21:2613PubMedPubMedCentralCrossRefGoogle Scholar
  56. Lee WC, Lin WL, Matsui T et al (2015) Protein arginine methyltransferase 8: tetrameric structure and protein substrate specificity. Biochemistry 54:7514CrossRefGoogle Scholar
  57. Li Y, Zhu R, Wang W et al (2015) Arginine methyltransferase 1 in the nucleus accumbens regulates behavioral effects of cocaine. J Neurosci 35:12890PubMedCrossRefGoogle Scholar
  58. Lim Y, Lee E, Lee J et al (2008) Down-regulation of asymmetric arginine methylation during replicative and H2O2-induced premature senescence in WI-38 human diploid fibroblasts. J Biochem 144:523PubMedCrossRefGoogle Scholar
  59. Lim Y, Yu S, Yun JA et al (2017) The prognostic significance of protein arginine methyltransferase 6 expression in colon cancer. Oncotarget 9:9010–9020PubMedPubMedCentralGoogle Scholar
  60. Lin YL, Tsai YJ, Liu YF et al (2013) The critical role of protein arginine methyltransferase prmt8 in zebrafish embryonic and neural development is non-redundant with its paralogue prmt1. PLoS One 8:e55221PubMedPubMedCentralCrossRefGoogle Scholar
  61. Liu F, Li F, Ma A et al (2013) Exploiting an allosteric binding site of PRMT3 yields potent and selective inhibitors. J Med Chem 56:2110PubMedPubMedCentralCrossRefGoogle Scholar
  62. Lupien M, Eeckhoute J, Meyer CA et al (2009) Coactivator function defines the active estrogen receptor alpha cistrome. Mol Cell Biol 29:3413PubMedPubMedCentralCrossRefGoogle Scholar
  63. Majumder S, Liu Y, Ford OH et al (2006) Involvement of arginine methyltransferase CARM1 in androgen receptor function and prostate cancer cell viability. Prostate 66:1292PubMedCrossRefGoogle Scholar
  64. Mallappa C, Hu YJ, Shamulailatpam P et al (2011) The expression of myogenic microRNAs indirectly requires protein arginine methyltransferase (Prmt5) but directly requires Prmt4. Nucleic Acids Res 39:1243PubMedCrossRefGoogle Scholar
  65. Nakai K, Xia W, Liao HW et al (2018) The role of PRMT1 in EGFR methylation and signaling in MDA-MB-468 triple-negative breast cancer cells. Breast Cancer 25(1):74–80PubMedCrossRefGoogle Scholar
  66. Nakayama K, Szewczyk MM, Dela Sena C et al (2018) TP-064, a potent and selective small molecule inhibitor of PRMT4 for multiple myeloma. Oncotarget 9:18480–18493PubMedPubMedCentralGoogle Scholar
  67. Neault M, Mallette FA, Vogel G et al (2012) Ablation of PRMT6 reveals a role as a negative transcriptional regulator of the p53 tumor suppressor. Nucleic Acids Res 40:9513PubMedPubMedCentralCrossRefGoogle Scholar
  68. O’Brien KB, Alberich-Jordà M, Yadav N et al (2010) CARM1 is required for proper control of proliferation and differentiation of pulmonary epithelial cells. Development 137:2147PubMedPubMedCentralCrossRefGoogle Scholar
  69. Osada S, Suzuki S, Yoshimi C et al (2013) Elevated expression of coactivator-associated arginine methyltransferase 1 is associated with early hepatocarcinogenesis. Oncol Rep 30:1669PubMedCrossRefGoogle Scholar
  70. Ou CY, LaBonte MJ, Manegold PC et al (2011) A coactivator role of CARM1 in the dysregulation of β-catenin activity in colorectal cancer cell growth and gene expression. Mol Cancer Res 9:660PubMedPubMedCentralCrossRefGoogle Scholar
  71. Pang L, Tian H, Chang N et al (2013) Loss of CARM1 is linked to reduced HuR function in replicative senescence. BMC Mol Biol 14:15PubMedPubMedCentralCrossRefGoogle Scholar
  72. Phalke S, Mzoughi S, Bezzi M et al (2012) p53-Independent regulation of p21Waf1/Cip1 expression and senescence by PRMT6. Nucleic Acids Res 40:9534PubMedPubMedCentralCrossRefGoogle Scholar
  73. Ryu JW, Kim SK, Son MY et al (2017) Novel prognostic marker PRMT1 regulates cell growth via downregulation of CDKN1A in HCC. Oncotarget 8:115444–115455PubMedPubMedCentralGoogle Scholar
  74. Schurter BT, Koh SS, Chen D et al (2001) Methylation of histone H3 by coactivator-associated arginine methyltransferase 1. Biochemistry 40:5747PubMedCrossRefGoogle Scholar
  75. Selvi BR, Batta K, Kishore AH et al (2010) Identification of a novel inhibitor of coactivator-associated arginine methyltransferase 1 (CARM1)-mediated methylation of histone H3 arg-17. J Biol Chem 285:7143–7152PubMedCrossRefGoogle Scholar
  76. Selvi BR, Swaminathan A, Maheshwari U, Nagabhushana A, Mishra RK, Kundu TK, Bronner M (2015) CARM1 regulates astroglial lineage through transcriptional regulation of Nanog and posttranscriptional regulation by miR92a. Mol Biol Cell 26(2):316–326PubMedPubMedCentralCrossRefGoogle Scholar
  77. Shen NY, Ng SY, Toepp SL et al (2018) Protein arginine methyltransferase expression and activity during myogenesis. Biosci Rep 38. pii: BSR20171533Google Scholar
  78. Siarheyeva A, Senisterra G, Allali-Hassani A et al (2012) An allosteric inhibitor of protein arginine methyltransferase 3. Structure 20:1425PubMedCrossRefGoogle Scholar
  79. Stallcup MR, Chen D, Koh SS et al (2000) Co-operation between protein-acetylating and protein-methylating co-activators in transcriptional activation. Biochem Soc Trans 28:415PubMedCrossRefGoogle Scholar
  80. Stein C, Riedl S, Rüthnick D et al (2012) The arginine methyltransferase PRMT6 regulates cell proliferation and senescence through transcriptional repression of tumor suppressor genes. Nucleic Acids Res 40:9522PubMedPubMedCentralCrossRefGoogle Scholar
  81. Su X, Zhu G, Ding X et al (2014) Molecular basis underlying histone H3 lysine-arginine methylation pattern readout by Spin/Ssty repeats of Spindlin1. Genes Dev 28:622PubMedPubMedCentralCrossRefGoogle Scholar
  82. Sun Y, Chung HH, Woo AR et al (2014) Protein arginine methyltransferase 6 enhances ligand-dependent and -independent activity of estrogen receptor α via distinct mechanisms. Biochim Biophys Acta 1843:2067PubMedCrossRefGoogle Scholar
  83. Swiercz R, Cheng D, Kim D et al (2007) Ribosomal protein rpS2 is hypomethylated in PRMT3-deficient mice. J Biol Chem 282:16917CrossRefGoogle Scholar
  84. Teyssier C, Chen D, Stallcup MR (2002) Requirement for multiple domains of the protein arginine methyltransferase CARM1 in its transcriptional coactivator function. J Biol Chem 277:46066PubMedCrossRefGoogle Scholar
  85. Toma-Fukai S, Kim JD, Park KE (2016) Novel helical assembly in arginine methyltransferase 8. J Mol Biol 428:1197–1208PubMedCrossRefGoogle Scholar
  86. Troffer-Charlier N, Cura V, Hassenboehler P et al (2007) Functional insights from structures of coactivator-associated arginine methyltransferase 1 domains. EMBO J 26:4391PubMedPubMedCentralCrossRefGoogle Scholar
  87. Tsai YJ, Pan H, Hung CM et al (2011) The predominant protein arginine methyltransferase PRMT1 is critical for zebrafish convergence and extension during gastrulation. FEBS J 278:905PubMedCrossRefGoogle Scholar
  88. Waldmann T, Izzo A, Kamieniarz K et al (2011) Methylation of H2AR29 is a novel repressive PRMT6 target. Epigenetics Chromatin 4:11PubMedPubMedCentralCrossRefGoogle Scholar
  89. Wang H, Huang ZQ, Xia L et al (2001) Methylation of histone H4 at arginine 3 facilitating transcriptional activation by nuclear hormone receptor. Science 293:853PubMedCrossRefGoogle Scholar
  90. Wang L, Charoensuksai P, Watson NJ et al (2013) CARM1 automethylation is controlled at the level of alternative splicing. Nucleic Acids Res 41:6870PubMedPubMedCentralCrossRefGoogle Scholar
  91. Wang L, Zhao Z, Meyer MB, Saha S, Menggang Y, Guo A, Wisinski KB, Huang W, Cai W, Wesley Pike J, Yuan M, Ahlquist P, Wei X (2014) CARM1 methylates chromatin remodeling factor BAF155 to enhance tumor progression and metastasis. Cancer Cell 25(1):21–36PubMedPubMedCentralCrossRefGoogle Scholar
  92. Wolf SS (2009) The protein arginine methyltransferase family: an update about function, new perspectives and the physiological role in humans. Cell Mol Life Sci 66:2109–2121PubMedCrossRefGoogle Scholar
  93. Wooderchak WL, Zang T, Zhou ZS et al (2008) Substrate profiling of PRMT1 reveals amino acid sequences that extend beyond the “RGG” paradigm. Biochemistry 47:9456PubMedCrossRefGoogle Scholar
  94. Wu J, Xu W (2012) Histone H3R17me2a mark recruits human RNA polymerase-associated factor 1 complex to activate transcription. Proc Natl Acad Sci USA 109:5675PubMedCrossRefGoogle Scholar
  95. Wu Q, Bruce AW, Jedrusik A et al (2009) CARM1 is required in embryonic stem cells to maintain pluripotency and resist differentiation. Stem Cells 27:2637PubMedPubMedCentralCrossRefGoogle Scholar
  96. Xu W, Cho H, Evans RM (2003) Acetylation and methylation in nuclear receptor gene activation. Methods Enzymol 364:205PubMedGoogle Scholar
  97. Yadav N, Cheng D, Richard S et al (2008) CARM1 promotes adipocyte differentiation by coactivating PPARgamma. EMBO Rep 9:193PubMedPubMedCentralCrossRefGoogle Scholar
  98. Yang Y, Lu Y, Espejo A et al (2010) TDRD3 is an effector molecule for arginine-methylated histone marks. Mol Cell 40:1016PubMedPubMedCentralCrossRefGoogle Scholar
  99. Zakrzewicz D, Eickelberg O (2009) From arginine methylation to ADMA: a novel mechanism with therapeutic potential in chronic lung diseases. BMC Pulm Med 9:5PubMedPubMedCentralCrossRefGoogle Scholar
  100. Zhang X, Cheng X (2003) Structure of the predominant protein arginine methyltransferase PRMT1 and analysis of its binding to substrate peptides. Structure 11:509PubMedPubMedCentralCrossRefGoogle Scholar
  101. Zhang J, Qian K, Yan C et al (2017a) Discovery of decamidine as a new and potent PRMT1 inhibitor. Med Chem Commun 8:440–444CrossRefGoogle Scholar
  102. Zhang WY, Lu WC, Jiang H et al (2017b) Discovery of alkyl bis(oxy)dibenzimidamide derivatives as novel protein arginine methyltransferase 1 (PRMT1) inhibitors. Chem Biol Drug Des 90:1260–1270PubMedCrossRefGoogle Scholar
  103. Zhang X, Zhu G, Su X et al (2018a) Nucleolar localization signal and histone methylation reader function is required for SPIN1 to promote rRNA gene expression. Biochem Biophys Res Commun 505:325–332PubMedCrossRefGoogle Scholar
  104. Zhang XP, Jiang YB, Zhong CQ et al (2018b) PRMT1 promoted HCC growth and metastasis in vitro and in vivo via activating the STAT3 signalling pathway. Cell Physiol Biochem 47:1643–1654PubMedCrossRefGoogle Scholar
  105. Zhao J, Adams A, Roberts B et al (2018) Protein arginine methyl transferase 1- and Jumonji C domain-containing protein 6-dependent arginine methylation regulate hepatocyte nuclear factor 4 alpha expression and hepatocyte proliferation in mice. Hepatology 67:1109–1126PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific ResearchBangaloreIndia
  2. 2.CSIR-Central Drug Research InstituteLucknowIndia

Personalised recommendations