Advertisement

Suction Capability and Cavitation

  • Johann Friedrich GülichEmail author
Chapter

Abstract

Definition of terms: “Cavitation” means the partial evaporation of liquid in a flow system. A cavity filled with vapor is created when the static pressure in a flow locally drops to the vapor pressure of the liquid due to excess velocities, so that some fluid evaporates and a two-phase flow is created in a small domain of the flow field. The vapor condenses suddenly (“implodes”) as soon as it is transported downstream into zones where the static pressure again exceeds the vapor pressure. With increasing extension of the cavitating zone with two-phase flow, the head and efficiency of the pump may be impaired, noise and vibrations excited and components damaged through cavitation erosion under certain conditions. When using the term “cavitation” the “cavitating flow” - i.e. the occurrence of local zones with two-phase flow - and “cavitation erosion” or cavitation damage must be well distinguished.

References

  1. 1.
    Arn, C.: Analyse et prediction de la baisse de rendement des turbines Francis par cavitation à bulles. Diss. EPF Lausanne (1998)Google Scholar
  2. 2.
    Balasubramanian, R., Bradshaw, S., Sabine, E.: Influence of impeller leading edge profiles on cavitation and suction performance. In: Proceedings of 27th International Pump Users Symposium, Texas A & M, pp. 34–44 (2011)Google Scholar
  3. 3.
    Berten, S., et al.: Investigation of cavitating flow phenomena in a high-energy pump diffuser at partload operation. In: International Rotating Equipment Conference. Düsseldorf session 8–3 (2012)Google Scholar
  4. 4.
    Bourdon, P., et al.: Vibratory characteristics of erosive cavitation vortices downstream of a fixed leading edge cavity. In: IAHR Symposium Belgrade, Paper H3 (1990)Google Scholar
  5. 5.
    Cooper, P., et al.: Reduction of cavitation damage in a high-energy water injection pump. ASME AJK2011–06092Google Scholar
  6. 6.
    Cooper, P., et al.: Elimination of cavitation-related instabilities and damage in high-energy pump impellers. In: 8th International Pump Users Symposium, Houston (1991)Google Scholar
  7. 7.
    Cooper, P., Antunes, F.: Cavitation damage in boiler feed pumps. EPRI CS-3158 (1983)Google Scholar
  8. 8.
    Cooper, P.: Pump Hydraulics—advanced short course 8. In: 13th Intl Pump Users Symposium, Houston (1996)Google Scholar
  9. 9.
    Dreiß, A.: Untersuchung der Laufradkavitation einer radialen Kreiselpumpe durch instationäre Druckmessungen im rotierenden System. Diss TU Braunschweig, Mitt des Pfleiderer-Instituts für Strömungsmaschinen, Heft 5. Verlag Faragallah (1997)Google Scholar
  10. 10.
    Dupont, P.: Etude de la dynamique d’une poche de cavitation partielle en vue de la prédiction de l’érosion dans les turbomachines hydrauliques. Diss. EPF Lausanne (1993)Google Scholar
  11. 11.
    Durrer, H.: Kavitationserosion und Strömungsmechanik. Techn. Rundschau. Sulzer. 3, 55–61 (1986)Google Scholar
  12. 12.
    EUROPUMP-brochure: NPSH for rotodynamic pumps: a reference guide. Elsevier (1999)Google Scholar
  13. 13.
    Farhat, M.: Contribution à l’étude de l’érosion de cavitation: mécanismes hydrodynamiques et prediction. Diss. EPF Lausanne (1994)Google Scholar
  14. 14.
    Franc, J.P., et al.: La Cavitation. Mechanismes physiques et aspects industriels. Presses Universitaires Grenoble (1995)Google Scholar
  15. 15.
    Friedrichs, J.: Auswirkungen instationärer Kavitationsformen auf Förderhöhenabfall und Kennlinieninstabilität von Kreiselpumpen. Diss TU Braunschweig, Mitt des Pfleiderer-Instituts für Strömungsmaschinen, Heft 9. Verlag Faragallah (2003)Google Scholar
  16. 16.
    Gantar, M.: The influence of cross section size of the diffuser channel on the hydraulic and cavitation characteristics of multi-stage radial pumps. In: Turboinstitut Conference on Fluid Flow Machinery. Ljubljana p. 469 (1984)Google Scholar
  17. 17.
    Gülich, J.F., et al.: Pump vibrations excited by cavitation. In: IMechE Conference on Fluid Machinery. The Hague (1990)Google Scholar
  18. 18.
    Gülich, J.F., Clother, A., Martens, H.J.: Cavitation noise and erosion in jet cavitation test devices and pumps. In: 2nd ASME Pumping Machinery Symposium. Washington (1993)Google Scholar
  19. 19.
    Gülich, J.F., Pace, S.: Quantitative prediction of cavitation erosion in centrifugal pumps. In: IAHR Symposium Montreal, Paper 42 (1986)Google Scholar
  20. 20.
    Gülich, J.F., Pace, S.E.: Solving pump problems related to hydraulic instabilities and cavitation. In: EPRI Power Plant Pumps Symposium, Tampa (1991)Google Scholar
  21. 21.
    Gülich, J.F., Rösch, A.: Kavitationserosion in Kreiselpumpen. Techn. Rundschau. Sulzer. 1, 28–32 (1988)Google Scholar
  22. 22.
    Gülich, J.F.: Ähnlichkeitskenngrößen für Saugfähigkeit und Blasenausbreitung bei Pumpen. Techn. Rundschau. Sulzer. 2, 66–69 (1980)Google Scholar
  23. 23.
    Gülich, J.F.: Beitrag zur Bestimmung der Kavitationserosion in Kreiselpumpen auf Grund der Blasenfeldlänge und des Kavitationsschalls. Diss. TH Darmstadt (1989)Google Scholar
  24. 24.
    Gülich, J.F.: Calculation of metal loss under attack of erosion-corrosion or cavitation erosion. In: International Conference on Advances in Material Technology Fossil Power Plants. Chicago (1987)Google Scholar
  25. 25.
    Gülich, J.F.: Guidelines for prevention of cavitation in centrifugal feedpumps. EPRI Report GS-6398, (1989)Google Scholar
  26. 26.
    Gülich, J.F.: Kavitationsdiagnose an Kreiselpumpen. Techn. Rundschau. Sulzer. 1, 29–35 (1992)Google Scholar
  27. 27.
    Gülich, J.F.: Möglichkeiten und Grenzen der Vorausberechnung von Kavitationsschäden in Kreiselpumpen. Forsch. Ing. Wes. 63(1/2), 27–39 (1997)Google Scholar
  28. 28.
    Gülich, J.F.: Selection criteria for suction impellers of centrifugal pumps. World Pumps, Parts 1 to 3, January, March, April, (2001)Google Scholar
  29. 29.
    Hergt, P., et al.: Influence of a diffuser in front of a centrifugal impeller. In: 8th Conference Fluid Machinery, Budapest, pp. 333–340 (1987)Google Scholar
  30. 30.
    Hergt, P., et al.: The suction performance of centrifugal pumps—possibilities and limits of improvements. In: Proceedings 13th International Pump Users Symposium, Houston pp. 13–25 (1996)Google Scholar
  31. 31.
    Hirschi, R.: Prédiction par modélisation numerique tridimensionelle des effects de la cavitation à poche dans les turbomachines hydrauliques. Diss. EPF Lausanne (1998)Google Scholar
  32. 32.
    Ido, A., Uranishi, K.: Tip clearance cavitation and erosion in mixed-flow pumps. ASME Fluid Mach. Forum FED 119, 27–29 (1991)Google Scholar
  33. 33.
    Keller, A., et al.: Maßstabseffekte bei der Strömungskavitation. Forsch. Ing. Wes. 65, 48–57 (1999)CrossRefGoogle Scholar
  34. 34.
    Keller, A.: Einfluß der Turbulenz der Anströmung auf den Kavitationsbeginn. Pumpentagung Karlsruhe, C-4 (1996)Google Scholar
  35. 35.
    Laborde, R., et al.: Tip clearance and tip vortex cavitation in an axial flow pump. ASME J. Fluids. Eng. 119, 680–685 (1997)CrossRefGoogle Scholar
  36. 36.
    Ludwig, G.: Experimentelle Untersuchungen zur Kavitation am saugseitigen Dichtspalt von Kreiselpumpen sowie zu sekundären Auswirkungen des Spaltstromes. Diss TH Darmstadt (1992)Google Scholar
  37. 37.
    Marks, J.: Experimentelle Untersuchung der Stofftrennung mittels Kavitation am Beispiel von Ammoniak-Wasser-Gemischen. Diss. TU Berlin. Mensch & Buch Verlag, Berlin (2005)Google Scholar
  38. 38.
    McCaul, C., et al.: A new highly cavitation resistant casting alloy and its application in pumps. NACE-Corrosion, New Orleans (1993)Google Scholar
  39. 39.
    Michell, F.L., et al.: Twenty-three years of operating experience with the world’s largest boiler feedwater pump. In: Proceedings of 14th International Pump Users Symposium, Texas A & M, pp. 75–83 (1998)Google Scholar
  40. 40.
    Piltz, H.H.: Werkstoffzerstörung durch Kavitation. Kavitationsuntersuchungen an einem Magnetostriktions-Schwinggerät. Diss. TH Darmstadt (1963)Google Scholar
  41. 41.
    Rieger, H.: Kavitation und erosion. VDI Ber. 354, 139–148 (1979)Google Scholar
  42. 42.
    Rütschi, K.: Messung und Drehzahlumrechnung des NPSH-Wertes bei Kreiselpumpen. Schweiz. Ing. u. Arch. 98(39), 971–974 (1980)Google Scholar
  43. 43.
    Schiavello, B., et al.: Improvement of cavitation performance and impeller life in high-energy boiler feedpumps. In: IAHR Symposium Trondheim (1988)Google Scholar
  44. 44.
    Schiavello, B.: Prescott M: Field cases due to various cavitation damage mechanisms: analysis and solutions. EPRI Power Plant Pumps Symp, Tampa (1991)Google Scholar
  45. 45.
    Schiavello, B.: Cavitation and recirculation troubleshooting methodology. In: 10th International Pump Users Symposium, Houston (1993)Google Scholar
  46. 46.
    Spohnholtz, H.H.: NPSH-Verhalten von Halbaxialpumpen bei Teillast. Diss TU Braunschweig, Mitt des Pfleiderer-Instituts für Strömungsmaschinen, Heft 4. Verlag Faragallah (1997)Google Scholar
  47. 47.
    Schmidt, T.: Experimentelle Untersuchungen zum Saugverhalten von Kreiselpumpe mittlerer spezifischer Drehzahl bei Teillast. Diss TU Braunschweig, Mitt des Pfleiderer-Instituts für Strömungsmaschinen, Heft 5. Verlag Faragallah (1997)Google Scholar
  48. 48.
    Scott, C., Ward, T.: Cavitation in centrifugal pump diffusers. Proc. ImechE. C. 452/042 (1992)Google Scholar
  49. 49.
    Simoneau, R., Mossoba, Y.: Field experience with ultra-high cavitation resistance alloys in Francis turbines. In: IAHR Symposium Trondheim, Paper K1 (1988)Google Scholar
  50. 50.
    Simoneau, R.: A new class of high strain hardening austenitic stainless steels to fight cavitation erosion. In: IAHR Symposium Montreal, Paper 83 (1986)Google Scholar
  51. 51.
    Simoneau, R.: Cobalt containing austenitic stainless steels with high cavitation erosion resistance. US Patent 4588440 (1986)Google Scholar
  52. 52.
    Simoneau, R.: Transposition of cavitation marks on different hardness metals. ASME FEDSM97-3300 (1997)Google Scholar
  53. 53.
    Sloteman, D.P., et al.: Control of back-flow at the inlets of centrifugal pumps and inducers. In: 1st International Pump Symposium, Houston (1984)Google Scholar
  54. 54.
    Sloteman, D.P.: Cavitation in high-energy pumps—detection and damage potential. In: Proceedings of 23rd Interntational Pump Users Symposium, Texas A & M, pp. 29–38 (2007)Google Scholar
  55. 55.
    Schmidt, T., et al.: NPSH-Verhalten von Halbaxialpumpen bei Teillast. Pumpentagung Karlsruhe, C-5 (1996)Google Scholar
  56. 56.
    Steller, K. et al.: Comments on erosion tests conducted in an ASTM interlaboratory test program. J. Test. Eval. 103–110 (1979)Google Scholar
  57. 57.
    Striedinger, R.: Beitrag zur Bedeutung der Wasserqualität und von Maßstabseffekten in Kreiselpumpen bei beginnender Kavitation. Diss TU Darmstadt, Shaker (2002)Google Scholar
  58. 58.
    Thamsen, P.U., et al.: Cavitation in single-vane sewage pumps. ISROMAC 12-2008–20196Google Scholar
  59. 59.
    Timcke, J.H.: NPSH-Umrechnung quadratisch oder nicht? ingenieur verlag nagel, Δp Das moderne Pumpenmagazin 7, Teil 1: Nr 3, 54–56 + 58–60, Teil 2: Nr 2, pp. 50–53 (2001)Google Scholar
  60. 60.
    Tsujimoto, Y., et al.: Observation of oscillating cavitation in an inducer. ASME J. Fluids. Eng. 119, 775–781 (1997)CrossRefGoogle Scholar
  61. 61.
    Uetz, H.: Abrasion und Erosion. Hanser, München (1986)Google Scholar
  62. 62.
    Visser, C.F.: Pump impeller lifetime improvement through visual study of leading-edge cavitation. In: 15th International Pump Users Symposium, Houston (1998)Google Scholar
  63. 63.
    Worster, D.M., Worster, C.: Calculation of 3D-flows in impellers and its use in improving cavitation performance in centrifugal pumps. In: 2nd Conference on Cavitation, Paper IMechE C203/83 (1983)Google Scholar
  64. 64.
    Yedidiah, S.: Oscillations at low NPSH caused by flow conditions in the suction pipe. ASME Cavitation and Multiphase Flow Forum (1974)Google Scholar
  65. 65.
    Skara, V.: Expermiental observation of cavitation phenomena in centrifugal pump impellers at part load. Diss. TU Braunschweig (2015)Google Scholar
  66. 66.
    Bolleter, U, Carney, B.: Solution to cavitation-induced vibration problems in crude-oil pipeline pumps. In: 8th Pump Users Symposium Texas A&M (1991)Google Scholar
  67. 67.
    Liebner, T., Cowan, D., Bradshaw, S.: Influence of wear ring geometry on suction performance. In: 32nd Pump Users Symposium Texas A&M (2016)Google Scholar
  68. 68.
    Bachert, R.: Dreidimensionale, instationäre Effekte kavitierender Strömungen – Analysen an Einzelprofilen und in einer Radialpumpe. Diss. TU Darmstadt (2004)Google Scholar
  69. 69.
    Bradshaw, S., Sabini, E.: Modification of BB1 vibration characteristics to meet ISO 13709 limits. In: Texas A&M Pump Symposium (2011)Google Scholar
  70. 70.
    Cowan, D., Liebner, T., Bradshaw, S.: Influence of impeller suction specific speed on vibration performance. In: 29th International Pump Users Symposium. Houston, pp. 18–47 (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.VilleneuveSwitzerland

Personalised recommendations