Advertisement

Route Choice Decisions of E-bike Users: Analysis of GPS Tracking Data in the Netherlands

  • Gamze DaneEmail author
  • Tao Feng
  • Floor Luub
  • Theo Arentze
Conference paper
Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)

Abstract

Over the past years, the usage of electric bikes has emerged. E-bikes are suitable for short and medium distance trips. Therefore, the Dutch government promotes using e-bikes for daily commuting trips. However, the impact of increasing demand on the cycling infrastructure is unclear. Additionally, route choice models for e-bikes are limited. This paper estimates a route choice model for e-bike users in the Noord-Brabant region of The Netherlands. The data used are based on 17626 trips from 742 users including user profiles extracted from GPS data. In order to analyze the data, a mixed logit model is applied on the route choice of respondents with addition of the path-size attribute. Mixed logit model allows a panel data setup and enables the examination of preference heterogeneity around the mean of distance attribute. Moreover, the path-size attribute is included on the model to account for the overlap between alternatives. Socio-demographic characteristics and trip-related factors are found to be influencing on the route choice decisions of e-bike and bike users. There are differences on the significance of variables between e-bike and bike users.

Keywords

Big data Route choice E-bike GPS 

References

  1. Allemann D, Raubal M (2015) Usage differences between bikes and E-bikes. In: Bacao F, Santos M, Painho M (eds) Geographic information science as an enabler of smarter cities and communities. Springer, Heidelberg, pp 201–217Google Scholar
  2. Altman-Hall L (1996) Commuter bicycle route choice: analysis of major determinants and safety implications. PhD DissertationGoogle Scholar
  3. Ben-Akiva M, Bierlaire M (1999) Discrete choice methods and their applications to short-term travel decisions. In: Hall R (ed) Handbook of transportation science. Kluwer (1999), pp 5–34Google Scholar
  4. Bierlaire M, Chen J, Newman J (2013) A probabilistic map matching method for smartphone GPS data. Transp Res Part C Emerg Technol 26:78–98.  https://doi.org/10.1016/j.trc.2012.08.001Google Scholar
  5. BOVAG-RAI vereniging (2016) Mobiliteit in Cijfers Tweewielers 2016–2017. Stichting BOVAG-RAI Mobiliteit, AmsterdamGoogle Scholar
  6. Bovy P, Stern E (1990) Route choice: wayfinding in transport networks. Springer NetherlandsGoogle Scholar
  7. Bradley MA, Bovy PHL (1984) A stated preference analysis of bicyclist route choice. In: PTRC annual meeting, London, pp 39–53Google Scholar
  8. Broach J, Dill J, Gliebe J (2012) Where do cyclist ride? A rout choice model developed with revealed preference GPS data. Transp Res Part A 46:1730–1740Google Scholar
  9. Buehler R, Pucher J (2012) Cycling to work in 90 large American cities: new evidence on the role of bike paths and lanes. Transportation 39(2):409–432.  https://doi.org/10.1007/s11116-011-9355-8Google Scholar
  10. Casello JM, Usyukov V (2014) Modeling cyclists’ route choice based on GPS Data. Transp Res Rec J Transp Res Board 2430:155–161.  https://doi.org/10.3141/2430-16Google Scholar
  11. Dijkstra EW (1959) A note on two problems in connexion with graphs. Numerische Mathematik 269–271Google Scholar
  12. Dill J, Gliebe J (2008) Understanding and measuring bicycling behavior: a focus on travel time and route choice. Bicycling. https://doi.org/OTREC-RR-08-03
  13. Feng T, Timmermans HJP (2013a) Transportation mode recognition using GPS and accelerometer data. Transp Res Part C 37:118–130Google Scholar
  14. Feng T, Timmermans HJP (2013b) Map matching of GPS data with Bayesian belief networks. J East Asia Soc Transp Stud 10:100–112Google Scholar
  15. Frejinger E (2008) Route choice analysis: data, models, algorithms and applicationsGoogle Scholar
  16. Gatersleben B, Appleton KM (2007) Contemplating cycling to work: attitudes and perceptions in different stages of change. Transp Res Part A Policy Pract 41(4):302–312.  https://doi.org/10.1016/j.tra.2006.09.002
  17. de Hartog J, Boogaard H, Nijland H, Hoek G (2010) Do the health benefits of cycling outweigh the risks? Environ Health Perspect 1109–1116Google Scholar
  18. Heinen E, Maat K, van Wee B (2013) The effect of work-related factors on the bicycle commute mode choice in the Netherlands. Transportation 40(1):23–43.  https://doi.org/10.1007/s11116-012-9399-4Google Scholar
  19. Hensher D, Rose J, Greene W (2005) Applied choice analysisGoogle Scholar
  20. Hood J, Sall E, Charlton B (2011) A GPS-based bicycle route choice model for San Francisco, California. Transp Lett 3(1):63–75Google Scholar
  21. Huisman DJ, Hengeveld J (2014) Opmaak van een methode voor fietstellingen in de provincie Antwerpen.  https://doi.org/10.1007/s13398-014-0173-7.2
  22. Hunt JD, Abraham JE (2007) Influences on bicycle use. Transportation 34(4):453–470.  https://doi.org/10.1007/s11116-006-9109-1Google Scholar
  23. KNMI (2014) Tijden van zonopkomst en –ondergang 2014 52°00’. http://www.sciamachy-validation.org/klimatologie/achtergrondinformatie/zonop2014.pdf
  24. Landis B, Vattikuti V, Brannick M (1997) Real-time human perceptions: towards a bicycle level of service. Transp Res Rec 1578:119–126Google Scholar
  25. Li S, Muresan M, Fu L (2017) Cycling in Toronto: route choice behaviour and implications to infrastructure planning. Transp Res 5998Google Scholar
  26. Ma D, Omer I, Osaragi T, Sandberg M, Jiang B (2018) Why topology matters in predicting human activities. Environ Plan B Urban Anal City SciGoogle Scholar
  27. Menghini G, Carrasco N, Schüssler N, Axhausen K (2010) Route choice of cyclists in Zurich. Transp Res Part A Policy Pract 754–765Google Scholar
  28. Milakis D, Athanasopoulos K (2014) What about people in cycle network planning? Applying participative multicriteria GIS analysis in the case of the Athens metropolitan cycle network. J Transp Geogr 35:120–129.  https://doi.org/10.1016/j.jtrangeo.2014.01.009Google Scholar
  29. Misra A, Watkins K (2017) Modeling cyclists’ willingness to deviate from shortest path using revealed preference data, vol 1, pp 1–16Google Scholar
  30. Prashker JN, Bekhor S (2004) Route choice models used in the stochastic user equilibrium problem: a review. Transp Rev 24(4):437–463.  https://doi.org/10.1080/0144164042000181707Google Scholar
  31. Prato CG (2009) Route choice modeling: past, present and future research directions. J Choice Model 2(1):65–100Google Scholar
  32. Rijkswaterstaat (2017) Publieksrapportage Rijkswegennet, jaaroverzicht 2016. Retrieved from Rijkswaterstaat: https://www.rijksoverheid.nl/documenten/rapporten/2017/02/14/publieksrapportage-rijkswegennet-jaaroverzicht-2016, 30 Jan 2017
  33. Romanillos G, Zaltz Austwick M, Ettema D, De Kruijf J (2016) Big data and cycling. Transp Rev 36(1):114–133.  https://doi.org/10.1080/01441647.2015.1084067Google Scholar
  34. Sener IN, Eluru N, Bhat C (2009) An analysis of bicycle route choice preferences in Texas, US. Transportation 36(5):511–539Google Scholar
  35. Shafizadeh KR, Niemeier DA (1997) Bicycle journey-to-work: travel behavior characteristics and spatial attributes. Transp Res Board 1578:84–90Google Scholar
  36. Stinson M, Bhat CR (2003) An analysis of commuter bicyclist route choice using a stated preference survey. Transp Res Rec J Transp Res Board 634(512)Google Scholar
  37. Tertoolen G, Ruijs K, de Vree R, Stelling C (2016) Change is cool. Inzichten uit fietsstimuleringsprojectenGoogle Scholar
  38. Ton D, Cats O, Duives D, Hoogendoorn S (2017) How do people cycle in Amsterdam? Estimating cyclists’ route choice determinants using GPS data from an urban area. In: The 96th annual meeting of the transportation research board: the 2017 compendium of papers, pp 1–12Google Scholar
  39. Usyukov V (2013) Development of a cyclists’ route-choice model: an Ontario case study. DissertationGoogle Scholar
  40. van Overdijk RPJ (2016) The influence of comfort aspects on route- and mode-choice decisions of cyclist in the Netherlands. ThesisGoogle Scholar
  41. Wachotsch U, Kolodziej A, Specht B, Kohlmeyer R, Petrikowski F (2014) Electric bikes get things rolling. Federal Environment Agency (UBA), Dessau-RosslauGoogle Scholar
  42. Weber T, Scaramuzza G, Schmitt KU (2014) Evaluation of e-bike accidents in Switzerland. Accid Anal Prev 73:47–52.  https://doi.org/10.1016/j.aap.2014.07.020Google Scholar
  43. Weinert J, Ma C, Cherry C (2007) The transition to electric bikes in China: history and key reasons for rapid growth. Transportation 34(3):301–318.  https://doi.org/10.1007/s11116-007-9118-8Google Scholar
  44. Winters M, Davidson G, Kao D, Teschke K (2011) Motivators and deterrents of bicycling: comparing influences on decisions to ride. Transportation 38(1):153–168.  https://doi.org/10.1007/s11116-010-9284-yGoogle Scholar
  45. Zimmermann M, Mai T, Frejinger E (2017) Bike route choice modeling using GPS data without choice sets of paths. Transp Res Part C Emerg Technol 75:183–196.  https://doi.org/10.1016/j.trc.2016.12.009Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Gamze Dane
    • 1
    Email author
  • Tao Feng
    • 1
  • Floor Luub
    • 1
  • Theo Arentze
    • 1
  1. 1.Department of Built EnvironmentEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations