Advertisement

Improving Business-as-Usual Scenarios in Land Change Modelling by Extending the Calibration Period and Integrating Demographic Data

  • Romain MejeanEmail author
  • Martin Paegelow
  • Mehdi Saqalli
  • Doryan Kaced
Conference paper
Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)

Abstract

Land use and land cover change (LUCC) models are increasingly being used to anticipate the future of territories, particularly through the prospective scenario method. In the case of so-called trend or Business-as-Usual (BAU) scenarios, the aim is to observe the current dynamics and to extend them into the future. However, as they are implemented as baseline simulation in most current software packages, BAU scenarios are calibrated from a training period built from only two dates. We argue that this limits the quantitative estimation of future change intensity, and we illustrate it from a simple model of deforestation in Northern Ecuadorian Amazon using the Land Change Modeler (LCM) software package. This paper proposes a contribution to improve BAU scenarios calibration by mainly two enhancements: taking into account a longer calibration period for estimating change quantities and the integration of thematic data in change probabilities matrices. We thus demonstrate the need to exceed the linear construction of BAU scenarios as well as the need to integrate thematic and particularly socio-demographic data into the estimation of future quantities of change. The spatial aspects of our quantitative adjustments are discussed and tend to show that improvements in the quantitative aspects should not be dissociated from an improvement in the spatial allocation of changes, which may lead to a decrease in the predictive accuracy of the simulations.

Keywords

Land change modelling Business as usual Scenarios Training dates 

References

  1. Armenteras D, Espelta JM, Rodríguez N, Retana J (2017) Deforestation dynamics and drivers in different forest types in Latin America: three decades of studies (1980–2010). Glob Environ Change 46:139–147.  https://doi.org/10.1016/j.gloenvcha.2017.09.002CrossRefGoogle Scholar
  2. Baynard CW, Ellis JM, Davis H (2013) Roads, petroleum and accessibility: the case of eastern Ecuador. GeoJournal 78:675–695.  https://doi.org/10.1007/s10708-012-9459-5CrossRefGoogle Scholar
  3. Bilsborrow RE, Barbieri AF, Pan W (2004) Changes in population and land use over time in the Ecuadorian Amazon. Acta Amaz 34:635–647.  https://doi.org/10.1590/S0044-59672004000400015CrossRefGoogle Scholar
  4. Bromley R (1981) The colonization of humid tropical areas in Ecuador. Singap J Trop Geogr 2:15–26.  https://doi.org/10.1111/j.1467-9493.1981.tb00114.xCrossRefGoogle Scholar
  5. Brown LA, Sierra R, Southgate D, Labao L (1992) Complementary perspectives as a means of understanding regional change: frontier settlement in the Ecuador Amazon. Environ Plan A 24:939–961.  https://doi.org/10.1068/a240939CrossRefGoogle Scholar
  6. Camacho Olmedo MT, Mas JF (2018) Markov Chain. In: Camacho Olmedo MT, Paegelow M, Mas J-F, Escobar F (eds) Geomatic approaches for modeling land change scenarios. Springer International Publishing, Cham, pp 441–445CrossRefGoogle Scholar
  7. Camacho Olmedo MT, Paegelow M, Mas JF, Escobar F (2018) Geomatic approaches for modeling land change scenarios. An introduction. In: Camacho Olmedo MT, Paegelow M, Mas J-F, Escobar F (eds) Geomatic approaches for modeling land change scenarios. Springer International Publishing, Cham, pp 1–8CrossRefGoogle Scholar
  8. Carr DL (2003) Proximate population factors and deforestation in tropical agricultural frontiers. Popul Environ 25:585–612.  https://doi.org/10.1023/B:POEN.0000039066.05666.8dCrossRefGoogle Scholar
  9. Castella J-C, Verburg PH (2007) Combination of process-oriented and pattern-oriented models of land-use change in a mountain area of Vietnam. Ecol Model 202:410–420.  https://doi.org/10.1016/j.ecolmodel.2006.11.011CrossRefGoogle Scholar
  10. Chen H, Pontius RG (2010) Diagnostic tools to evaluate a spatial land change projection along a gradient of an explanatory variable. Landsc Ecol 25:1319–1331.  https://doi.org/10.1007/s10980-010-9519-5CrossRefGoogle Scholar
  11. Chhabra A, Geist H, Houghton RA, Haberl H, Braimoh AK, Vlek PLG, Patz J, Xu J, Ramankutty N, Coomes O, Lambin EF (2006) Multiple impacts of land-use/cover change. In: Lambin EF, Geist H (eds) Land-use and land-cover change. Springer, Berlin, Heidelberg, pp 71–116CrossRefGoogle Scholar
  12. Ching W-K, Huang X, Ng MK, Siu T-K (2013) Higher-order Markov chains. Markov chains. Springer US, Boston, MA, pp 141–176CrossRefGoogle Scholar
  13. Comber A, Balzter H, Cole B, Fisher P, Johnson S, Ogutu B (2016) Methods to quantify regional differences in land cover change. Remote Sens 8:176.  https://doi.org/10.3390/rs8030176CrossRefGoogle Scholar
  14. De Grande P (2016) El formato Redatam/The Redatam format. Estudios Demográficos y Urbanos 31:811.  https://doi.org/10.24201/edu.v31i3.15CrossRefGoogle Scholar
  15. Eastman J (2014) TerrSet geospatial monitoring and modeling system. Clark University, Worcester, MAGoogle Scholar
  16. Eastman JR, Toledano J (2018) A short presentation of the land change modeler (LCM). In: Camacho Olmedo MT, Paegelow M, Mas J-F, Escobar F (eds) Geomatic approaches for modeling land change scenarios. Springer International Publishing, Cham, pp 499–505CrossRefGoogle Scholar
  17. Escobar F, van Delden H, Hewitt R (2018) LUCC scenarios. In: Camacho Olmedo MT, Paegelow M, Mas J-F, Escobar F (eds) Geomatic approaches for modeling land change scenarios. Springer International Publishing, Cham, pp 81–97CrossRefGoogle Scholar
  18. Floriani LD, Magillo P (2009) Triangulated irregular network. In: Liu L, Özsu TT (eds) Encyclopedia of database systems. Springer US, Boston, MA, pp 3178–3179Google Scholar
  19. Garcia Alvarez D (2018) Aproximación al Estudio de la Incertidumbre en la Modelización del Cambio de Usos y Coberturas del Suelo (LUCC). Universidad de GranadaGoogle Scholar
  20. Geist H, McConnell W, Lambin EF, Moran E, Alves D, Rudel T (2006) Causes and trajectories of land-use/cover change. In: Lambin EF, Geist H (eds) Land-use and land-cover change. Springer, Berlin, Heidelberg, pp 41–70CrossRefGoogle Scholar
  21. Hiraoka M, Yamamoto S (1980) Agricultural development in the Upper Amazon of Ecuador. Geogr Rev 70:423.  https://doi.org/10.2307/214077CrossRefGoogle Scholar
  22. Houet T, Aguejdad R, Doukari O, Battaia G, Clarke K (2016) Description and validation of a “non path-dependent” model for projecting contrasting urban growth futures. Cybergeo.  https://doi.org/10.4000/cybergeo.27397CrossRefGoogle Scholar
  23. Houet T, Gourmelon F (2014) La géoprospective – Apport de la dimension spatiale aux démarches prospectives. Cybergeo.  https://doi.org/10.4000/cybergeo.26194CrossRefGoogle Scholar
  24. Houssou L (2016) Simulation sociale à base d’agents du comportement microéconomique des ménages en Amazonie équatorienne, face aux contaminations pétrolières, aux dynamiques économiques et aux politiques publiques. MSc thesis, Université nationale du Vietnam, Institut francophone international, Hanoi, VietnamGoogle Scholar
  25. Jarrín-V. PS, Tapia Carrillo L, Zamora G (2017) Demografía y transformación territorial: medio siglo de cambio en la región amazónica de Ecuador/Demography and territorial transformation: half a century of change in the Amazonian Region of Ecuador. Eutopía, Revista de Desarrollo Económico Territorial 81.  https://doi.org/10.17141/eutopia.12.2017.2913
  26. Juteau-Martineau G, Becerra S, Maurice L (2014) Ambiente, petróleo y vulnerabilidad política en el Oriente Ecuatoriano: ¿hacia nuevas formas de gobernanza energética? América Latina Hoy 67:119.  https://doi.org/10.14201/alh201467119137CrossRefGoogle Scholar
  27. Kitchin R (2013) Big data and human geography: opportunities, challenges and risks. Dialogues Hum Geogr 3:262–267.  https://doi.org/10.1177/2043820613513388CrossRefGoogle Scholar
  28. Lambin EF, Turner BL, Geist HJ, Agbola SB, Angelsen A, Bruce JW, Coomes OT, Dirzo R, Fischer G, Folke C, George PS, Homewood K, Imbernon J, Leemans R, Li X, Moran EF, Mortimore M, Ramakrishnan PS, Richards JF, Skånes H, Steffen W, Stone GD, Svedin U, Veldkamp TA, Vogel C, Xu J (2001) The causes of land-use and land-cover change: moving beyond the myths. Glob Environ Change 11:261–269.  https://doi.org/10.1016/S0959-3780(01)00007-3CrossRefGoogle Scholar
  29. Lu D, Weng Q (2007) A survey of image classification methods and techniques for improving classification performance. Int J Remote Sens 28:823–870.  https://doi.org/10.1080/01431160600746456CrossRefGoogle Scholar
  30. Maestripieri N, Paegelow M (2013) Validation spatiale de deux modèles de simulation: l’exemple des plantations industrielles au Chili. Cybergeo.  https://doi.org/10.4000/cybergeo.26042CrossRefGoogle Scholar
  31. Mahmood R, Pielke RA, Hubbard KG, Niyogi D, Dirmeyer PA, McAlpine C, Carleton AM, Hale R, Gameda S, Beltrán-Przekurat A, Baker B, McNider R, Legates DR, Shepherd M, Du J, Blanken PD, Frauenfeld OW, Nair US, Fall S (2014) Land cover changes and their biogeophysical effects on climate: land cover changes and their biogeophysical effects on climate. Int J Climatol 34:929–953.  https://doi.org/10.1002/joc.3736CrossRefGoogle Scholar
  32. Martin D, Bracken I (1993) The integration of socioeconomic and physical resource data for applied land management information systems. Appl Geogr 13:45–53.  https://doi.org/10.1016/0143-6228(93)90079-GCrossRefGoogle Scholar
  33. Mas J (2004) Modelling deforestation using GIS and artificial neural networks. Environ Model Softw 19:461–471.  https://doi.org/10.1016/S1364-8152(03)00161-0CrossRefGoogle Scholar
  34. Mas J-F (1999) Monitoring land-cover changes: a comparison of change detection techniques. Int J Remote Sens 20:139–152.  https://doi.org/10.1080/014311699213659CrossRefGoogle Scholar
  35. Mas J-F, Kolb M, Paegelow M, Camacho Olmedo MT, Houet T (2014) Inductive pattern-based land use/cover change models: a comparison of four software packages. Environ Model Softw 51:94–111.  https://doi.org/10.1016/j.envsoft.2013.09.010CrossRefGoogle Scholar
  36. Mas JF, Paegelow M, Camacho Olmedo MT (2018) LUCC modeling approaches to calibration. In: Camacho Olmedo MT, Paegelow M, Mas J-F, Escobar F (eds) Geomatic approaches for modeling land change scenarios. Springer International Publishing, Cham, pp 11–25CrossRefGoogle Scholar
  37. Mas J-F, Soares Filho B, Pontius R, Farfán Gutiérrez M, Rodrigues H (2013) A suite of tools for ROC analysis of spatial models. ISPRS Int J Geo-Inf 2:869–887.  https://doi.org/10.3390/ijgi2030869CrossRefGoogle Scholar
  38. Matthews RB, Gilbert NG, Roach A, Polhill JG, Gotts NM (2007) Agent-based land-use models: a review of applications. Landsc Ecol 22:1447–1459CrossRefGoogle Scholar
  39. Mena CF, Bilsborrow RE, McClain ME (2006) Socioeconomic drivers of deforestation in the Northern Ecuadorian Amazon. Environ Manage 37:802–815.  https://doi.org/10.1007/s00267-003-0230-zCrossRefGoogle Scholar
  40. Morin L (2015) Diagnostic agraire d’un front pionnier en Amazonie équatorienne, Paroisse de Dayuma, province d’Orellana, Equateur. MSc thesis, SupAgro Montpellier IRCGoogle Scholar
  41. National Research Council (1998) People and pixels: linking remote sensing and social science. National Academies Press, Washington, D.C.Google Scholar
  42. Oliver TH, Morecroft MD (2014) Interactions between climate change and land use change on biodiversity: attribution problems, risks, and opportunities: interactions between climate change and land use change. Wiley Interdiscip Rev Clim Change 5:317–335.  https://doi.org/10.1002/wcc.271CrossRefGoogle Scholar
  43. Orme CDL, Davies RG, Burgess M, Eigenbrod F, Pickup N, Olson VA, Webster AJ, Ding T-S, Rasmussen PC, Ridgely RS, Stattersfield AJ, Bennett PM, Blackburn TM, Gaston KJ, Owens IPF (2005) Global hotspots of species richness are not congruent with endemism or threat. Nature 436:1016–1019.  https://doi.org/10.1038/nature03850CrossRefGoogle Scholar
  44. Paegelow M (2018) Impact and integration of multiple training dates for Markov based land change modeling. In: Camacho Olmedo MT, Paegelow M, Mas J-F, Escobar F (eds) Geomatic approaches for modeling land change scenarios. Springer International Publishing, Cham, pp 121–138CrossRefGoogle Scholar
  45. Paegelow M, Camacho Olmedo MT (2010) Modelos de simulación espacio-temporal y Teledetección: el método de la segmentación para la cartografía cronológica de usos del suelo. Serie Geográfica – Universidad de Alcalá, pp 19–34Google Scholar
  46. Paegelow M, Camacho Olmedo MT, Mas J-F, Houet T (2014) Benchmarking of LUCC modelling tools by various validation techniques and error analysis. Cybergeo.  https://doi.org/10.4000/cybergeo.26610CrossRefGoogle Scholar
  47. Parker DC, Manson SM, Janssen MA, Hoffmann MJ, Deadman P (2003) Multi-agent systems for the simulation of land-use and land-cover change: a review. Ann Assoc Am Geogr 93:314–337.  https://doi.org/10.1111/1467-8306.9302004CrossRefGoogle Scholar
  48. Perz SG, Walker RT (2002) Household life cycles and secondary forest cover among small farm colonists in the Amazon. World Dev 30:1009–1027CrossRefGoogle Scholar
  49. Pontius GR (2000) Quantification error versus location error in comparison of categorical maps. Photogramm Eng Remote Sens 66:1011–1016Google Scholar
  50. Pontius RG, Huffaker D, Denman K (2004) Useful techniques of validation for spatially explicit land-change models. Ecol Model 179:445–461.  https://doi.org/10.1016/j.ecolmodel.2004.05.010CrossRefGoogle Scholar
  51. Pontius RG, Millones M (2011) Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment. Int J Remote Sens 32:4407–4429.  https://doi.org/10.1080/01431161.2011.552923CrossRefGoogle Scholar
  52. Pontius RG, Schneider LC (2001) Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA. Agric Ecosyst Environ 85:239–248.  https://doi.org/10.1016/S0167-8809(01)00187-6CrossRefGoogle Scholar
  53. Preston SH (1996) The effect of population growth on environmental quality. Popul Res Policy Rev 15:95–108.  https://doi.org/10.1007/BF00126129CrossRefGoogle Scholar
  54. Rodrigues H, Soares-Filho B (2018) A short presentation of Dinamica EGO. In: Camacho Olmedo MT, Paegelow M, Mas J-F, Escobar F (eds) Geomatic approaches for modeling land change scenarios. Springer International Publishing, Cham, pp 493–498CrossRefGoogle Scholar
  55. Soares-Filho BS, Coutinho Cerqueira G, Lopes Pennachin C (2002) Dinamica—a stochastic cellular automata model designed to simulate the landscape dynamics in an Amazonian colonization frontier. Ecol Model 154:217–235.  https://doi.org/10.1016/S0304-3800(02)00059-5CrossRefGoogle Scholar
  56. Tso B, Mather P (2009) Classification methods for remotely sensed data, 2nd edn. CRC PressGoogle Scholar
  57. Veldkamp A, Lambin E (2001) Predicting land-use change. Agric Ecosyst Environ 85:1–6.  https://doi.org/10.1016/S0167-8809(01)00199-2CrossRefGoogle Scholar
  58. Wasserstrom R, Southgate D (2013) Deforestation, Agrarian reform and oil development in Ecuador, 1964–1994. Nat Resour 04:31–44.  https://doi.org/10.4236/nr.2013.41004CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Romain Mejean
    • 1
    Email author
  • Martin Paegelow
    • 1
  • Mehdi Saqalli
    • 2
  • Doryan Kaced
    • 3
  1. 1.GEODE UMR 5602 CNRS, Université Toulouse 2 Jean JaurèsToulouseFrance
  2. 2.GEODE UMR 5602 CNRSToulouseFrance
  3. 3.IRIT UMR 5505, CNRS, Université Toulouse 1 CapitoleToulouseFrance

Personalised recommendations