Potential of Crowdsourced Traces for Detecting Updates in Authoritative Geographic Data

  • Stefan S. Ivanovic
  • Ana-Maria Olteanu-RaimondEmail author
  • Sébastien Mustière
  • Thomas Devogele
Conference paper
Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)


Crowdsourced traces collected by GPS devices during sports activities are now widely available on different websites. The goal of this paper is to study the potential of crowdsourced traces coming from GPS devices to highlight updates in authoritative geographic data. To reach this goal, an approach based on two steps is proposed. First, a data matching method is applied to match authoritative data and crowdsourced traces. Second, for the non-matched crowdsourced segments composing a trace, different criteria are defined to decide if whether or not, non-matched segments should be considered as an alert for update in authoritative data. The proposed approach is tested on crowdsourced traces and on BDTOPO® authoritative road and path network in mountain area. The results are promising: 727, 1 km of missing paths were found in the test area, which corresponds to 7.7% of the total length of used traces. The discovered missing paths also represent a contribution of 2.4% of the total length of BDTopo® road and path network in the test area.


Data matching Crowdsourced GPS traces Detection of updates Authoritative geographic data Decision making 


  1. Al-Bakri M, Fairbairn D (2012) Assessing similarity matching for possible integration of feature classifications of geospatial data from official and informal sources. Int J Geogr Inf Sci 26(8):1437–1456CrossRefGoogle Scholar
  2. Bergman C, Oksanen J (2016) Conflation of OpenStreetMap and mobile sports tracking data for automatic bicycle routing. Trans GIS 20(6):848–868CrossRefGoogle Scholar
  3. Bruns A (2009) Blogs, Wikipedia, second life, and beyond. Peter Lang, New York, N.YGoogle Scholar
  4. Chehreghan A, Ali Abbaspour R (2017) An assessment of spatial similarity degree between polylines on multi-scale, multi-source maps. Geocarto Int 32(5):471–487CrossRefGoogle Scholar
  5. Etienne L, Devogele T, Buchin M, McArdle G (2015) Trajectory box plot: a new pattern to summarize movements. Int J Geogr Inf Sci 30(5):835–853CrossRefGoogle Scholar
  6. Fan H, Zipf A, Fu Q, Neis P (2014) Quality assessment for building footprints data on OpenStreetMap. Int J Geogr Inf Sci 28(4):700–719CrossRefGoogle Scholar
  7. Girres J-F, Touya G (2010) Quality assessment of the French OpenStreetMap dataset. Trans GIS 14(4):435–459CrossRefGoogle Scholar
  8. Ivanovic S, Olteanu-Raimond AM, Mustière S, Devogele T (2015) Detection of potential updates of authoritative spatial databases by fusion of volunteered geographical information from different sources. In: FOSS4G-Europe conferenceGoogle Scholar
  9. Jokar Arsanjani J, Helbich M, Kainz W, Darvishi Boloorani A (2013) Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. Int J Appl Earth Obs Geoinf 21:265–275CrossRefGoogle Scholar
  10. Koukoletsos T, Haklay M, Ellul C (2012) Assessing data completeness of VGI through an automated matching procedure for linear data. Trans GIS 16(4):477–498CrossRefGoogle Scholar
  11. Lou Y, Zhang C, Zheng Y, Xie X, Wang W, Huang Y (2009) Map-matching for low-sampling-rate GPS trajectories. In: Proceedings of the 17th ACM SIGSPATIAL international conference on advances in geographic information systems—GIS ’09Google Scholar
  12. Liu C, Xiong L, Hu X, Shan J (2015) A progressive buffering method for road map update using OpenStreetMap data. ISPRS Int J Geo-Inf 4(3):1246–1264. Scholar
  13. Mustière S, Devogele T (2008) matching networks with different levels of detail. GeoInformatica 12(4):435–453CrossRefGoogle Scholar
  14. Newson P, Krumm J (2009) Hidden Markov map matching through noise and sparseness. In: Proceedings of the 17th ACM SIGSPATIAL international conference on advances in geographic information systems—GIS ’09. ACM Press, New York, NY, USA, pp 336–343Google Scholar
  15. Olteanu-Raimond A, Jolivet L, Van Damme M, Royer T, Fraval L, See L, Sturn T, Karner M, Moorthy I, Fritz S (2018) An experimental framework for integrating citizen and community science into land cover, land use, and land change detection processes in a National Mapping Agency. Land 7(3):103CrossRefGoogle Scholar
  16. Olteanu-Raimond A, Mustière S, Ruas A (2015) Knowledge formalization for vector data matching using belief theory. J Spat Inf Sci (10)Google Scholar
  17. Olteanu-Raimond A, Hart G, Foody G, Touya G, Kellenberger T, Demetriou D (2016) The scale of VGI in map production: a perspective on European National Mapping Agencies. Trans GIS 21(1):74–90CrossRefGoogle Scholar
  18. Roszkowska E (2013) Rank ordering criteria weighting methods—a comparative overview. Optim Stud Ekon 5:14–33CrossRefGoogle Scholar
  19. See L, Mooney P, Foody G, Bastin L, Comber A, Estima J, Fritz S, Kerle N, Jiang B, Laakso M, Liu H, Milčinski G, Nikšič M, Painho M, Pődör A, Olteanu-Raimond A, Rutzinger M (2016) Crowdsourcing, citizen science or volunteered geographic information? The current state of crowdsourced geographic information. ISPRS Int J Geo-Inf 5(5):55CrossRefGoogle Scholar
  20. van Winden K, Biljecki F, van der Spek S (2016) Automatic update of road attributes by mining GPS tracks. Trans GIS 20(5):664–683CrossRefGoogle Scholar
  21. Walter V, Fritsch D (1999) Matching spatial data sets: a statistical approach. Int J Geogr Inf Sci 13(5):445–473CrossRefGoogle Scholar
  22. Xavier E, Ariza-López F, Ureña-Cámara M (2016) A survey of measures and methods for matching geospatial vector datasets. ACM Comput Surv 49(2):1–34CrossRefGoogle Scholar
  23. Zielstra D, Hochmair H (2011) Comparative study of pedestrian accessibility to transit stations using free and proprietary network data. Transp Res Rec J Transp Res Board 2217:145–152CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Stefan S. Ivanovic
    • 1
  • Ana-Maria Olteanu-Raimond
    • 1
    Email author
  • Sébastien Mustière
    • 1
  • Thomas Devogele
    • 2
  1. 1.University of Paris-Est, LASTIG MEIG, IGN, ENSGSaint-MandéFrance
  2. 2.Université François Rabelais de ToursToursFrance

Personalised recommendations