Virus Maturation

  • Carmen San MartínEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1215)


A virus particle consists of a genome contained within a protein shell. This shell (the capsid) plays multiple roles throughout the infectious cycle, from genome protection to host recognition to successful genome delivery. When capsids first assemble in the cell, most often an initial product is obtained that has not achieved its fully infectious form. To do so, it must undergo a final process called maturation. Virus maturation entails conformational and stability changes. These changes are often driven by proteolytic cleavages, and their main purpose is to ensure successful delivery of the virus genome to a new host cell. Recent advances in molecular, structural, and physical virology techniques are providing a wealth of detailed information and new points of view to understand the principles of virus maturation. Evidence showing that viral capsids are built with a limited set of structural solutions has prompted a new virus classification in structural lineages deriving from a few initial ancestors. This chapter summarizes the current knowledge on maturation for the main virus structural lineages, as well as for other relevant viruses not assigned to any particular lineage yet.


Virus structure Virus assembly Capsid Scaffold Maturation Stability Uncoating Virus proteases 





Atomic force microscopy


Adenovirus protease


Bluetongue virus


Cryo-electron microscopy


Electron microscopy data bank


Endoplasmic reticulum


Flock House virus


Human immunodeficiency virus


Infectious bursal disease virus


International Committee on Taxonomy of Viruses


Major coat protein


Mass spectrometry


Nucleo-cytoplasmic large DNA viruses


Bacteriophage Φ6 polymerase complex (PC)


Protein data bank


Stimulated emission depletion



Work in the San Martín lab is funded by grants BFU2013-41249-P and BIO2015-68990-REDT (the Spanish Adenovirus Network, AdenoNet), from the Spanish Ministry of Economy and Competitiveness, as well as BFU2016-74868-P, co-funded by the Spanish State Research Agency and the European Regional Development Fund.


  1. 1.
    Flint J, Racaniello VR, Rall GF, Skalka AM (2015) Principles of virology, volume I: molecular biology, 4th edn. American Society of Microbiology, Washington, DCGoogle Scholar
  2. 2.
    Mateu MG (2013) Assembly, stability and dynamics of virus capsids. Arch Biochem Biophys 531:65–79PubMedGoogle Scholar
  3. 3.
    Veesler D, Johnson JE (2012) Virus maturation. Annu Rev Biophys 41:473–496PubMedPubMedCentralGoogle Scholar
  4. 4.
    Suomalainen M, Greber UF (2013) Uncoating of non-enveloped viruses. Curr Opin Virol 3:27–33PubMedPubMedCentralGoogle Scholar
  5. 5.
    Yamauchi Y, Greber UF (2016) Principles of virus uncoating: cues and the snooker ball. TrafficGoogle Scholar
  6. 6.
    Tsai B (2007) Penetration of nonenveloped viruses into the cytoplasm. Annu Rev Cell Dev Biol 23:23–43PubMedGoogle Scholar
  7. 7.
    Verdaguer N, Garriga D, Fita I (2013) X-ray crystallography of viruses. Subcell Biochem 68:117–144PubMedGoogle Scholar
  8. 8.
    Ho PT, Reddy VS (2018) Rapid increase of near atomic resolution virus capsid structures determined by cryo-electron microscopy. J Struct Biol 201:1–4PubMedGoogle Scholar
  9. 9.
    Kaelber JT, Hryc CF, Chiu W (2017) Electron cryomicroscopy of viruses at near-atomic resolutions. Annu Rev Virol 4:287–308PubMedGoogle Scholar
  10. 10.
    Briggs JA (2013) Structural biology in situ – the potential of subtomogram averaging. Curr Opin Struct Biol 23:261–267PubMedGoogle Scholar
  11. 11.
    Roos WH, Bruinsma R, Wuite GJL (2010) Physical virology. Nat Phys 6:733–743Google Scholar
  12. 12.
    Greber UF (2016) Virus and host mechanics support membrane penetration and cell entry. J Virol 90:3802–3805PubMedPubMedCentralGoogle Scholar
  13. 13.
    de Pablo PJ (2017) Atomic force microscopy of virus shells. Semin Cell Dev Biol 73:199–208Google Scholar
  14. 14.
    de Pablo PJ, Colchero J, Gómez-Herrero J, Baró AM (1998) Jumping mode scanning force microscopy. Appl Phys Lett 73:3300–3302Google Scholar
  15. 15.
    Ortega-Esteban A, Horcas I, Hernando-Pérez M, Ares P, Pérez-Berná AJ, San Martín C, Carrascosa JL, de Pablo PJ, Gómez-Herrero J (2012) Minimizing tip–sample forces in jumping mode atomic force microscopy in liquid. Ultramicroscopy 114:56–61Google Scholar
  16. 16.
    Klar TA, Jakobs S, Dyba M, Egner A, Hell SW (2000) Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci U S A 97:8206–8210PubMedPubMedCentralGoogle Scholar
  17. 17.
    Lippe R (2017) Flow virometry: a powerful tool to functionally characterize viruses. J Virol 92(3):e01765–e01717Google Scholar
  18. 18.
    Uetrecht C, Heck AJ (2011) Modern biomolecular mass spectrometry and its role in studying virus structure, dynamics, and assembly. Angew Chem Int Ed Engl 50:8248–8262PubMedGoogle Scholar
  19. 19.
    Abrescia NG, Bamford DH, Grimes JM, Stuart DI (2012) Structure unifies the viral universe. Annu Rev Biochem 81:795–822PubMedGoogle Scholar
  20. 20.
    Krupovic M, Bamford DH (2008) Virus evolution: how far does the double beta-barrel viral lineage extend? Nat Rev Microbiol 6:941–948PubMedGoogle Scholar
  21. 21.
    Abrescia NG, Cockburn JJ, Grimes JM, Sutton GC, Diprose JM, Butcher SJ, Fuller SD, San Martín C, Burnett RM, Stuart DI, Bamford DH, Bamford JK (2004) Insights into assembly from structural analysis of bacteriophage PRD1. Nature 432:68–74PubMedGoogle Scholar
  22. 22.
    Benson SD, Bamford JKH, Bamford DH, Burnett RM (1999) Viral evolution revealed by bacteriophage PRD1 and human adenovirus coat protein structures. Cell 98:825–833PubMedGoogle Scholar
  23. 23.
    San Martín C, Huiskonen JT, Bamford JK, Butcher SJ, Fuller SD, Bamford DH, Burnett RM (2002) Minor proteins, mobile arms and membrane-capsid interactions in the bacteriophage PRD1 capsid. Nat Struct Biol 9:756–763PubMedGoogle Scholar
  24. 24.
    Racaniello VR (2013) Picornaviridae: the viruses and their replication. In: Knipe DM, Howley PM (eds) Fields virology, vol 1. Wolters Kluwer/Lippincott Williams & Wilkins Health, Philadelphia, PA, pp 453–489Google Scholar
  25. 25.
    Berns KI, Parrish CR (2013) Parvoviridae. In: Knipe DM, Howley PM (eds) Fields virology, vol 1. Wolters Kluwer/Lippincott Williams & Wilkins Health, Philadelphia, PA, pp 1768–1791Google Scholar
  26. 26.
    Coulibaly F, Chevalier C, Gutsche I, Pous J, Navaza J, Bressanelli S, Delmas B, Rey FA (2005) The birnavirus crystal structure reveals structural relationships among icosahedral viruses. Cell 120:761–772PubMedGoogle Scholar
  27. 27.
    Friesen PD (2013) Insect viruses. In: Knipe DM, Howley PM (eds) Fields virology, vol 1. Wolters Kluwer/Lippincott Williams & Wilkins Health, Philadelphia, PA, pp 2326–2354Google Scholar
  28. 28.
    Schneemann A, Zhong W, Gallagher TM, Rueckert RR (1992) Maturation cleavage required for infectivity of a nodavirus. J Virol 66:6728–6734PubMedPubMedCentralGoogle Scholar
  29. 29.
    Schneemann A, Gallagher TM, Rueckert RR (1994) Reconstitution of flock house provirions: a model system for studying structure and assembly. J Virol 68:4547–4556PubMedPubMedCentralGoogle Scholar
  30. 30.
    Fisher AJ, Johnson JE (1993) Ordered duplex RNA controls capsid architecture in an icosahedral animal virus. Nature 361:176–179PubMedGoogle Scholar
  31. 31.
    Gallagher TM, Rueckert RR (1988) Assembly-dependent maturation cleavage in provirions of a small icosahedral insect ribovirus. J Virol 62:3399–3406PubMedPubMedCentralGoogle Scholar
  32. 32.
    Nemecek D, Cheng N, Qiao J, Mindich L, Steven AC, Heymann JB (2011) Stepwise expansion of the bacteriophage varphi6 procapsid: possible packaging intermediates. J Mol Biol 414:260–271PubMedPubMedCentralGoogle Scholar
  33. 33.
    Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera – a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612PubMedPubMedCentralGoogle Scholar
  34. 34.
    Kearney BM, Johnson JE (2014) Assembly and maturation of a T = 4 quasi-equivalent virus is guided by electrostatic and mechanical forces. Viruses 6:3348–3362PubMedPubMedCentralGoogle Scholar
  35. 35.
    Canady MA, Tihova M, Hanzlik TN, Johnson JE, Yeager M (2000) Large conformational changes in the maturation of a simple RNA virus, nudaurelia capensis omega virus (NomegaV). J Mol Biol 299:573–584PubMedGoogle Scholar
  36. 36.
    Helgstrand C, Munshi S, Johnson JE, Liljas L (2004) The refined structure of Nudaurelia capensis omega virus reveals control elements for a T = 4 capsid maturation. Virology 318:192–203PubMedGoogle Scholar
  37. 37.
    Tang J, Lee KK, Bothner B, Baker TS, Yeager M, Johnson JE (2009) Dynamics and stability in maturation of a T = 4 virus. J Mol Biol 392:803–812PubMedPubMedCentralGoogle Scholar
  38. 38.
    Basavappa R, Syed R, Flore O, Icenogle JP, Filman DJ, Hogle JM (1994) Role and mechanism of the maturation cleavage of VP0 in poliovirus assembly: structure of the empty capsid assembly intermediate at 2.9 A resolution. Protein Sci 3:1651–1669PubMedPubMedCentralGoogle Scholar
  39. 39.
    Bubeck D, Filman DJ, Cheng N, Steven AC, Hogle JM, Belnap DM (2005) The structure of the poliovirus 135S cell entry intermediate at 10-angstrom resolution reveals the location of an externalized polypeptide that binds to membranes. J Virol 79:7745–7755PubMedPubMedCentralGoogle Scholar
  40. 40.
    Chow M, Newman JF, Filman D, Hogle JM, Rowlands DJ, Brown F (1987) Myristylation of picornavirus capsid protein VP4 and its structural significance. Nature 327:482–486PubMedGoogle Scholar
  41. 41.
    Marc D, Masson G, Girard M, van der Werf S (1990) Lack of myristoylation of poliovirus capsid polypeptide VP0 prevents the formation of virions or results in the assembly of noninfectious virus particles. J Virol 64:4099–4107PubMedPubMedCentralGoogle Scholar
  42. 42.
    Moscufo N, Chow M (1992) Myristate-protein interactions in poliovirus: interactions of VP4 threonine 28 contribute to the structural conformation of assembly intermediates and the stability of assembled virions. J Virol 66:6849–6857PubMedPubMedCentralGoogle Scholar
  43. 43.
    Strauss M, Filman DJ, Belnap DM, Cheng N, Noel RT, Hogle JM (2015) Nectin-like interactions between poliovirus and its receptor trigger conformational changes associated with cell entry. J Virol 89:4143–4157PubMedPubMedCentralGoogle Scholar
  44. 44.
    Irigoyen N, Garriga D, Navarro A, Verdaguer N, Rodriguez JF, Caston JR (2009) Autoproteolytic activity derived from the infectious bursal disease virus capsid protein. J Biol Chem 284:8064–8072PubMedPubMedCentralGoogle Scholar
  45. 45.
    Luque D, Saugar I, Rodríguez JF, Verdaguer N, Garriga D, San Martín C, Velázquez-Muriel JA, Trus BL, Carrascosa JL, Castón JR (2007) Infectious bursal disease virus capsid assembly and maturation by structural rearrangements of a transient molecular switch. J Virol 81:6869–6878PubMedPubMedCentralGoogle Scholar
  46. 46.
    Saugar I, Luque D, Ona A, Rodriguez JF, Carrascosa JL, Trus BL, Caston JR (2005) Structural polymorphism of the major capsid protein of a double-stranded RNA virus: an amphipathic alpha helix as a molecular switch. Structure 13:1007–1017PubMedGoogle Scholar
  47. 47.
    Grimes JM, Burroughs JN, Gouet P, Diprose JM, Malby R, Zientara S, Mertens PP, Stuart DI (1998) The atomic structure of the bluetongue virus core. Nature 395:470–478PubMedGoogle Scholar
  48. 48.
    Dermody TS, Parker JSL, Sherry B (2013) Orthoreoviruses. In: Knipe DM, Howley PM (eds) Fields virology, vol 2. Wolters Kluwer/Lippincott Williams & Wilkins Health, Philadelphia, PA, pp 1304–1346Google Scholar
  49. 49.
    Ghabrial SA, Caston JR, Jiang D, Nibert ML, Suzuki N (2015) 50-plus years of fungal viruses. Virology 479–480:356–368PubMedGoogle Scholar
  50. 50.
    Poranen MM, Bamford DH (2012) Assembly of large icosahedral double-stranded RNA viruses. In: Rossmann MG, Rao VB (eds) Viral molecular machines. Springer, Boston, MA, pp 379–402Google Scholar
  51. 51.
    Caspar DLD, Klug A (1962) Physical principles in the construction of regular viruses. Cold Spring Harb Symp Quant Biol 27:1–24PubMedGoogle Scholar
  52. 52.
    Luque D, Gonzalez JM, Garriga D, Ghabrial SA, Havens WM, Trus B, Verdaguer N, Carrascosa JL, Caston JR (2010) The T=1 capsid protein of Penicillium chrysogenum virus is formed by a repeated helix-rich core indicative of gene duplication. J Virol 84:7256–7266PubMedPubMedCentralGoogle Scholar
  53. 53.
    Long CP, McDonald SM (2017) Rotavirus genome replication: some assembly required. PLoS Pathog 13:e1006242PubMedPubMedCentralGoogle Scholar
  54. 54.
    Roy P (2017) Bluetongue virus structure and assembly. Curr Opin Virol 24:115–123PubMedGoogle Scholar
  55. 55.
    Trask SD, McDonald SM, Patton JT (2012) Structural insights into the coupling of virion assembly and rotavirus replication. Nat Rev Microbiol 10:165–177PubMedPubMedCentralGoogle Scholar
  56. 56.
    Boudreaux CE, Kelly DF, McDonald SM (2015) Electron microscopic analysis of rotavirus assembly-replication intermediates. Virology 477:32–41PubMedPubMedCentralGoogle Scholar
  57. 57.
    Mindich L (2012) Packaging in dsRNA viruses. Adv Exp Med Biol 726:601–608PubMedGoogle Scholar
  58. 58.
    Poranen MM, Tuma R, Bamford DH (2005) Assembly of double-stranded RNA bacteriophages. Adv Virus Res 64:15–43PubMedGoogle Scholar
  59. 59.
    Poranen MM, Paatero AO, Tuma R, Bamford DH (2001) Self-assembly of a viral molecular machine from purified protein and RNA constituents. Mol Cell 7:845–854PubMedGoogle Scholar
  60. 60.
    Butcher SJ, Dokland T, Ojala PM, Bamford DH, Fuller SD (1997) Intermediates in the assembly pathway of the double-stranded RNA virus phi6. EMBO J 16:4477–4487PubMedPubMedCentralGoogle Scholar
  61. 61.
    Huiskonen JT, de Haas F, Bubeck D, Bamford DH, Fuller SD, Butcher SJ (2006) Structure of the bacteriophage phi6 nucleocapsid suggests a mechanism for sequential RNA packaging. Structure 14:1039–1048PubMedGoogle Scholar
  62. 62.
    Nemecek D, Boura E, Wu W, Cheng N, Plevka P, Qiao J, Mindich L, Heymann JB, Hurley JH, Steven AC (2013) Subunit folds and maturation pathway of a dsRNA virus capsid. Structure 21:1374–1383PubMedPubMedCentralGoogle Scholar
  63. 63.
    Fokine A, Rossmann MG (2014) Molecular architecture of tailed double-stranded DNA phages. Bacteriophage 4:e28281PubMedPubMedCentralGoogle Scholar
  64. 64.
    Suttle CA (2005) Viruses in the sea. Nature 437:356–361PubMedPubMedCentralGoogle Scholar
  65. 65.
    Baker ML, Jiang W, Rixon FJ, Chiu W (2005) Common ancestry of herpesviruses and tailed DNA bacteriophages. J Virol 79:14967–14970PubMedPubMedCentralGoogle Scholar
  66. 66.
    Gelbart WM, Knobler CM (2009) Virology: pressurized viruses. Science 323:1682–1683PubMedGoogle Scholar
  67. 67.
    Johnson JE (2010) Virus particle maturation: insights into elegantly programmed nanomachines. Curr Opin Struct Biol 20:210–216PubMedPubMedCentralGoogle Scholar
  68. 68.
    Wikoff WR, Liljas L, Duda RL, Tsuruta H, Hendrix RW, Johnson JE (2000) Topologically linked protein rings in the bacteriophage HK97 capsid. Science 289:2129–2133Google Scholar
  69. 69.
    Prevelige PE, Fane BA (2012) Building the machines: scaffolding protein functions during bacteriophage morphogenesis. Adv Exp Med Biol 726:325–350PubMedGoogle Scholar
  70. 70.
    Huang RK, Khayat R, Lee KK, Gertsman I, Duda RL, Hendrix RW, Johnson JE (2011) The Prohead-I structure of bacteriophage HK97: implications for scaffold-mediated control of particle assembly and maturation. J Mol Biol 408:541–554PubMedPubMedCentralGoogle Scholar
  71. 71.
    Oh B, Moyer CL, Hendrix RW, Duda RL (2014) The delta domain of the HK97 major capsid protein is essential for assembly. Virology 456–457:171–178PubMedGoogle Scholar
  72. 72.
    Duda RL, Oh B, Hendrix RW (2013) Functional domains of the HK97 capsid maturation protease and the mechanisms of protein encapsidation. J Mol Biol 425:2765–2781PubMedPubMedCentralGoogle Scholar
  73. 73.
    Gertsman I, Gan L, Guttman M, Lee K, Speir JA, Duda RL, Hendrix RW, Komives EA, Johnson JE (2009) An unexpected twist in viral capsid maturation. Nature 458:646–650PubMedPubMedCentralGoogle Scholar
  74. 74.
    Veesler D, Khayat R, Krishnamurthy S, Snijder J, Huang RK, Heck AJ, Anand GS, Johnson JE (2014) Architecture of a dsDNA viral capsid in complex with its maturation protease. Structure 22:230–237PubMedGoogle Scholar
  75. 75.
    Smith DE, Tans SJ, Smith SB, Grimes S, Anderson DL, Bustamante C (2001) The bacteriophage phi29 portal motor can package DNA against a large internal force. Nature 413:748–752Google Scholar
  76. 76.
    Duda RL, Hempel J, Michel H, Shabanowitz J, Hunt D, Hendrix RW (1995) Structural transitions during bacteriophage HK97 head assembly. J Mol Biol 247:618–635PubMedGoogle Scholar
  77. 77.
    Lata R, Conway JF, Cheng N, Duda RL, Hendrix RW, Wikoff WR, Johnson JE, Tsuruta H, Steven AC (2000) Maturation dynamics of a viral capsid: visualization of transitional intermediate states. Cell 100:253–263PubMedGoogle Scholar
  78. 78.
    Lee KK, Gan L, Tsuruta H, Moyer C, Conway JF, Duda RL, Hendrix RW, Steven AC, Johnson JE (2008) Virus capsid expansion driven by the capture of mobile surface loops. Structure 16:1491–1502PubMedPubMedCentralGoogle Scholar
  79. 79.
    Gertsman I, Komives EA, Johnson JE (2010a) HK97 maturation studied by crystallography and H/2H exchange reveals the structural basis for exothermic particle transitions. J Mol Biol 397:560–574PubMedPubMedCentralGoogle Scholar
  80. 80.
    Gertsman I, Fu CY, Huang R, Komives EA, Johnson JE (2010b) Critical salt bridges guide capsid assembly, stability, and maturation behavior in bacteriophage HK97. Mol Cell Proteomics 9:1752–1763PubMedPubMedCentralGoogle Scholar
  81. 81.
    Ross PD, Cheng N, Conway JF, Firek BA, Hendrix RW, Duda RL, Steven AC (2005) Crosslinking renders bacteriophage HK97 capsid maturation irreversible and effects an essential stabilization. EMBO J 24:1352–1363PubMedPubMedCentralGoogle Scholar
  82. 82.
    Ross PD, Conway JF, Cheng N, Dierkes L, Firek BA, Hendrix RW, Steven AC, Duda RL (2006) A free energy cascade with locks drives assembly and maturation of bacteriophage HK97 capsid. J Mol Biol 364:512–525PubMedPubMedCentralGoogle Scholar
  83. 83.
    Roos WH, Gertsman I, May ER, Brooks CL 3rd, Johnson JE, Wuite GJ (2012) Mechanics of bacteriophage maturation. Proc Natl Acad Sci U S A 109:2342–2347PubMedPubMedCentralGoogle Scholar
  84. 84.
    Parent KN, Khayat R, Tu LH, Suhanovsky MM, Cortines JR, Teschke CM, Johnson JE, Baker TS (2010) P22 coat protein structures reveal a novel mechanism for capsid maturation: stability without auxiliary proteins or chemical crosslinks. Structure 18:390–401PubMedPubMedCentralGoogle Scholar
  85. 85.
    Yang F, Forrer P, Dauter Z, Conway JF, Cheng N, Cerritelli ME, Steven AC, Pluckthun A, Wlodawer A (2000) Novel fold and capsid-binding properties of the lambda-phage display platform protein gpD. Nat Struct Biol 7:230–237PubMedGoogle Scholar
  86. 86.
    Grunewald K, Desai P, Winkler DC, Heymann JB, Belnap DM, Baumeister W, Steven AC (2003) Three-dimensional structure of herpes simplex virus from cryo-electron tomography. Science 302:1396–1398PubMedGoogle Scholar
  87. 87.
    Cardone G, Heymann JB, Cheng N, Trus BL, Steven AC (2012) Procapsid assembly, maturation, nuclear exit: dynamic steps in the production of infectious herpesvirions. Adv Exp Med Biol 726:423–439PubMedPubMedCentralGoogle Scholar
  88. 88.
    Yu X, Jih J, Jiang J, Zhou ZH (2017a) Atomic structure of the human cytomegalovirus capsid with its securing tegument layer of pp150. Science 356(6345):eaam6892PubMedPubMedCentralGoogle Scholar
  89. 89.
    Bauer DW, Huffman JB, Homa FL, Evilevitch A (2013) Herpes virus genome, the pressure is on. J Am Chem Soc 135:11216–11221PubMedPubMedCentralGoogle Scholar
  90. 90.
    Newcomb WW, Juhas RM, Thomsen DR, Homa FL, Burch AD, Weller SK, Brown JC (2001) The UL6 gene product forms the portal for entry of DNA into the herpes simplex virus capsid. J Virol 75:10923–10932PubMedPubMedCentralGoogle Scholar
  91. 91.
    Rochat RH, Liu X, Murata K, Nagayama K, Rixon FJ, Chiu W (2011) Seeing the portal in herpes simplex virus type 1 B capsids. J Virol 85:1871–1874PubMedGoogle Scholar
  92. 92.
    Liu F, Roizman B (1993) Characterization of the protease and other products of amino-terminus-proximal cleavage of the herpes simplex virus 1 UL26 protein. J Virol 67:1300–1309PubMedPubMedCentralGoogle Scholar
  93. 93.
    Robertson BJ, McCann PJ 3rd, Matusick-Kumar L, Newcomb WW, Brown JC, Colonno RJ, Gao M (1996) Separate functional domains of the herpes simplex virus type 1 protease: evidence for cleavage inside capsids. J Virol 70:4317–4328PubMedPubMedCentralGoogle Scholar
  94. 94.
    Heymann JB, Cheng N, Newcomb WW, Trus BL, Brown JC, Steven AC (2003) Dynamics of herpes simplex virus capsid maturation visualized by time-lapse cryo-electron microscopy. Nat Struct Mol Biol 10:334–341Google Scholar
  95. 95.
    Trus BL, Booy FP, Newcomb WW, Brown JC, Homa FL, Thomsen DR, Steven AC (1996) The herpes simplex virus procapsid: structure, conformational changes upon maturation, and roles of the triplex proteins VP19c and VP23 in assembly. J Mol Biol 263:447–462PubMedGoogle Scholar
  96. 96.
    Roos WH, Radtke K, Kniesmeijer E, Geertsema H, Sodeik B, Wuite GJ (2009) Scaffold expulsion and genome packaging trigger stabilization of herpes simplex virus capsids. Proc Natl Acad Sci U S A 106:9673–9678PubMedPubMedCentralGoogle Scholar
  97. 97.
    Rux JJ, Burnett RM (2000) Type-specific epitope locations revealed by X-ray crystallographic study of adenovirus type 5 hexon. Mol Ther 1:18–30PubMedGoogle Scholar
  98. 98.
    Gil-Carton D, Jaakkola ST, Charro D, Peralta B, Castano-Diez D, Oksanen HM, Bamford DH, Abrescia NG (2015) Insight into the assembly of viruses with vertical single beta-barrel major capsid proteins. Structure 23:1866–1877PubMedGoogle Scholar
  99. 99.
    Huiskonen JT, Kivela HM, Bamford DH, Butcher SJ (2004) The PM2 virion has a novel organization with an internal membrane and pentameric receptor binding spikes. Nat Struct Mol Biol 11:850–856PubMedGoogle Scholar
  100. 100.
    Xiao C, Fischer MG, Bolotaulo DM, Ulloa-Rondeau N, Avila GA, Suttle CA (2017) Cryo-EM reconstruction of the Cafeteria roenbergensis virus capsid suggests novel assembly pathway for giant viruses. Sci Rep 7:5484PubMedPubMedCentralGoogle Scholar
  101. 101.
    Xiao C, Kuznetsov YG, Sun S, Hafenstein SL, Kostyuchenko VA, Chipman PR, Suzan-Monti M, Raoult D, McPherson A, Rossmann MG (2009) Structural studies of the giant mimivirus. PLoS Biol 7:e92PubMedGoogle Scholar
  102. 102.
    Bahar MW, Graham SC, Stuart DI, Grimes JM (2011) Insights into the evolution of a complex virus from the crystal structure of vaccinia virus D13. Structure 19:1011–1020PubMedPubMedCentralGoogle Scholar
  103. 103.
    Krupovic M, Koonin EV (2015) Polintons: a hotbed of eukaryotic virus, transposon and plasmid evolution. Nat Rev Microbiol 13:105–115PubMedGoogle Scholar
  104. 104.
    Zhang X, Sun S, Xiang Y, Wong J, Klose T, Raoult D, Rossmann MG (2012) Structure of Sputnik, a virophage, at 3.5-A resolution. Proc Natl Acad Sci U S A 109:18431–18436PubMedPubMedCentralGoogle Scholar
  105. 105.
    Fischer MG, Suttle CA (2011) A virophage at the origin of large DNA transposons. Science 332:231–234PubMedGoogle Scholar
  106. 106.
    Condezo GN, Marabini R, Ayora S, Carazo JM, Alba R, Chillón M, San Martín C (2015) Structures of adenovirus incomplete particles clarify capsid architecture and show maturation changes of packaging protein L1 52/55k. J Virol 89:9653–9664PubMedPubMedCentralGoogle Scholar
  107. 107.
    Butcher SJ, Bamford DH, Fuller SD (1995) DNA packaging orders the membrane of bacteriophage PRD1. EMBO J 14:6078–6086PubMedPubMedCentralGoogle Scholar
  108. 108.
    San Martín C, Burnett RM, de Haas F, Heinkel R, Rutten T, Fuller SD, Butcher SJ, Bamford DH (2001) Combined EM/X-ray imaging yields a quasi-atomic model of the adenovirus-related bacteriophage PRD1, and shows key capsid and membrane interactions. Structure 9:917–930Google Scholar
  109. 109.
    Peralta B, Gil-Carton D, Castano-Diez D, Bertin A, Boulogne C, Oksanen HM, Bamford DH, Abrescia NG (2013) Mechanism of membranous tunnelling nanotube formation in viral genome delivery. PLoS Biol 11:e1001667PubMedPubMedCentralGoogle Scholar
  110. 110.
    Santos-Perez I, Oksanen HM, Bamford DH, Goni FM, Reguera D, Abrescia NGA (2017) Membrane-assisted viral DNA ejection. Biochim Biophys Acta 1861:664–672Google Scholar
  111. 111.
    Condezo GN, San Martín C (2017) Localization of adenovirus morphogenesis players, together with visualization of assembly intermediates and failed products, favor a model where assembly and packaging occur concurrently at the periphery of the replication center. PLoS Pathog 13:e1006320PubMedPubMedCentralGoogle Scholar
  112. 112.
    Hong C, Oksanen HM, Liu X, Jakana J, Bamford DH, Chiu W (2014) A structural model of the genome packaging process in a membrane-containing double stranded DNA virus. PLoS Biol 12:e1002024PubMedPubMedCentralGoogle Scholar
  113. 113.
    Benevento M, Di Palma S, Snijder J, Moyer CL, Reddy VS, Nemerow GR, Heck AJ (2014) Adenovirus composition, proteolysis, and disassembly studied by in-depth qualitative and quantitative proteomics. J Biol Chem 289:11421–11430PubMedPubMedCentralGoogle Scholar
  114. 114.
    San Martín C (2012) Latest insights on adenovirus structure and assembly. Viruses 4:847–877PubMedPubMedCentralGoogle Scholar
  115. 115.
    Campos SK (2014) New structural model of adenoviral cement proteins is not yet concrete. Proc Natl Acad Sci U S A 111:E4542–E4543PubMedPubMedCentralGoogle Scholar
  116. 116.
    Liu H, Jin L, Koh SB, Atanasov I, Schein S, Wu L, Zhou ZH (2010) Atomic structure of human adenovirus by cryo-EM reveals interactions among protein networks. Science 329:1038–1043PubMedPubMedCentralGoogle Scholar
  117. 117.
    Reddy VS, Nemerow GR (2014a) Structures and organization of adenovirus cement proteins provide insights into the role of capsid maturation in virus entry and infection. Proc Natl Acad Sci U S A 111:11715–11720PubMedPubMedCentralGoogle Scholar
  118. 118.
    Reddy VS, Nemerow GR (2014b) Reply to Campos: revised structures of adenovirus cement proteins represent a consensus model for understanding virus assembly and disassembly. Proc Natl Acad Sci U S A 111:E4544–E4545PubMedPubMedCentralGoogle Scholar
  119. 119.
    Reddy VS, Natchiar SK, Stewart PL, Nemerow GR (2010) Crystal structure of human adenovirus at 3.5 A resolution. Science 329:1071–1075PubMedPubMedCentralGoogle Scholar
  120. 120.
    Dai X, Wu L, Sun R, Zhou ZH (2017) Atomic structures of minor proteins VI and VII in the human adenovirus. J Virol 91(24):e00850–e00817PubMedPubMedCentralGoogle Scholar
  121. 121.
    Yu X, Veesler D, Campbell MG, Barry ME, Asturias FJ, Barry MA, Reddy VS (2017b) Cryo-EM structure of human adenovirus D26 reveals the conservation of structural organization among human adenoviruses. Sci Adv 3:e1602670PubMedPubMedCentralGoogle Scholar
  122. 122.
    Pérez-Berná AJ, Marion S, Chichón FJ, Fernández JJ, Winkler DC, Carrascosa JL, Steven AC, Šiber A, San Martín C (2015) Distribution of DNA-condensing protein complexes in the adenovirus core. Nucleic Acids Res 43:4274–4283PubMedPubMedCentralGoogle Scholar
  123. 123.
    Weber J (1976) Genetic analysis of adenovirus type 2 III. Temperature sensitivity of processing viral proteins. J Virol 17:462–471PubMedPubMedCentralGoogle Scholar
  124. 124.
    Blainey PC, Graziano V, Pérez-Berná AJ, McGrath WJ, Flint SJ, San Martín C, Xie XS, Mangel WF (2013) Regulation of a viral proteinase by a peptide and DNA in one-dimensional space: IV. Viral proteinase slides along DNA to locate and process its substrates. J Biol Chem 288:2092–2102PubMedGoogle Scholar
  125. 125.
    Graziano V, Luo G, Blainey PC, Pérez-Berná AJ, McGrath WJ, Flint SJ, San Martín C, Xie XS, Mangel WF (2013) Regulation of a viral proteinase by a peptide and DNA in one-dimensional space: II. Adenovirus proteinase is activated in an unusual one-dimensional biochemical reaction. J Biol Chem 288:2068–2080PubMedGoogle Scholar
  126. 126.
    Mangel WF, San Martín C (2014) Structure, function and dynamics in adenovirus maturation. Viruses 6:4536–4570PubMedPubMedCentralGoogle Scholar
  127. 127.
    Mangel WF, McGrath WJ, Toledo DL, Anderson CW (1993) Viral DNA and a viral peptide can act as cofactors of adenovirus virion proteinase activity. Nature 361:274–275PubMedGoogle Scholar
  128. 128.
    Cotten M, Weber JM (1995) The adenovirus protease is required for virus entry into host cells. Virology 213:494–502PubMedGoogle Scholar
  129. 129.
    Gastaldelli M, Imelli N, Boucke K, Amstutz B, Meier O, Greber UF (2008) Infectious adenovirus type 2 transport through early but not late endosomes. Traffic 9:2265–2278PubMedGoogle Scholar
  130. 130.
    Greber UF, Willetts M, Webster P, Helenius A (1993) Stepwise dismantling of adenovirus 2 during entry into cells. Cell 75:477–486Google Scholar
  131. 131.
    Greber UF, Webster P, Weber J, Helenius A (1996) The role of the adenovirus protease on virus entry into cells. EMBO J 15:1766–1777PubMedPubMedCentralGoogle Scholar
  132. 132.
    Wiethoff CM, Wodrich H, Gerace L, Nemerow GR (2005) Adenovirus protein VI mediates membrane disruption following capsid disassembly. J Virol 79:1992–2000PubMedPubMedCentralGoogle Scholar
  133. 133.
    Ortega-Esteban A, Pérez-Berná AJ, Menéndez-Conejero R, Flint SJ, San Martín C, de Pablo PJ (2013) Monitoring dynamics of human adenovirus disassembly induced by mechanical fatigue. Sci Rep 3:1434. CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Pérez-Berná AJ, Marabini R, Scheres SHW, Menéndez-Conejero R, Dmitriev IP, Curiel DT, Mangel WF, Flint SJ, San Martín C (2009) Structure and uncoating of immature adenovirus. J Mol Biol 392:547–557PubMedPubMedCentralGoogle Scholar
  135. 135.
    Pérez-Berná AJ, Ortega-Esteban A, Menéndez-Conejero R, Winkler DC, Menéndez M, Steven AC, Flint SJ, de Pablo PJ, San Martín C (2012) The role of capsid maturation on adenovirus priming for sequential uncoating. J Biol Chem 287:31582–31595PubMedPubMedCentralGoogle Scholar
  136. 136.
    Burckhardt CJ, Suomalainen M, Schoenenberger P, Boucke K, Hemmi S, Greber UF (2011) Drifting motions of the adenovirus receptor CAR and immobile integrins initiate virus uncoating and membrane lytic protein exposure. Cell Host Microbe 10:105–117PubMedGoogle Scholar
  137. 137.
    Luisoni S, Suomalainen M, Boucke K, Tanner LB, Wenk MR, Guan XL, Grzybek M, Coskun U, Greber UF (2015) Co-option of membrane wounding enables virus penetration into cells. Cell Host Microbe 18:75–85PubMedGoogle Scholar
  138. 138.
    Nakano MY, Boucke K, Suomalainen M, Stidwill RP, Greber UF (2000) The first step of adenovirus type 2 disassembly occurs at the cell surface, independently of endocytosis and escape to the cytosol. J Virol 74:7085–7095PubMedPubMedCentralGoogle Scholar
  139. 139.
    Puntener D, Engelke MF, Ruzsics Z, Strunze S, Wilhelm C, Greber UF (2011) Stepwise loss of fluorescent core protein V from human adenovirus during entry into cells. J Virol 85:481–496PubMedGoogle Scholar
  140. 140.
    Ortega-Esteban A, Bodensiek K, San Martín C, Suomalainen M, Greber UF, de Pablo PJ, Schaap IA (2015a) Fluorescence tracking of genome release during mechanical unpacking of single viruses. ACS Nano 9:10571–10579Google Scholar
  141. 141.
    Silvestry M, Lindert S, Smith JG, Maier O, Wiethoff CM, Nemerow GR, Stewart PL (2009) Cryo-electron microscopy structure of adenovirus type 2 temperature-sensitive mutant 1 reveals insight into the cell entry defect. J Virol 83:7375–7383PubMedPubMedCentralGoogle Scholar
  142. 142.
    Ortega-Esteban A, Condezo GN, Pérez-Berná AJ, Chillón M, Flint SJ, Reguera D, San Martín C, de Pablo PJ (2015b) Mechanics of viral chromatin reveals the pressurization of human adenovirus. ACS Nano 9:10826–10833Google Scholar
  143. 143.
    Moyer CL, Besser ES, Nemerow GR (2016) A single maturation cleavage site in adenovirus impacts cell entry and capsid assembly. J Virol 90:521–532PubMedGoogle Scholar
  144. 144.
    Guimet D, Hearing P (2013) The adenovirus L4-22K protein has distinct functions in the posttranscriptional regulation of gene expression and encapsidation of the viral genome. J Virol 87:7688–7699PubMedPubMedCentralGoogle Scholar
  145. 145.
    Ostapchuk P, Almond M, Hearing P (2011) Characterization of empty adenovirus particles assembled in the absence of a functional adenovirus IVa2 protein. J Virol 85:5524–5531PubMedPubMedCentralGoogle Scholar
  146. 146.
    Wohl BP, Hearing P (2008) Role for the L1-52/55K protein in the serotype specificity of adenovirus DNA packaging. J Virol 82:5089–5092PubMedPubMedCentralGoogle Scholar
  147. 147.
    Wu K, Guimet D, Hearing P (2013) The adenovirus L4-33K protein regulates both late gene expression patterns and viral DNA packaging. J Virol 87:6739–6747PubMedPubMedCentralGoogle Scholar
  148. 148.
    Pérez-Berná AJ, Mangel WF, McGrath WJ, Graziano V, Flint J, San Martín C (2014) Processing of the L1 52/55k protein by the adenovirus protease: a new substrate and new insights into virion maturation. J Virol 88:1513–1524PubMedPubMedCentralGoogle Scholar
  149. 149.
    Cassany A, Ragues J, Guan T, Begu D, Wodrich H, Kann M, Nemerow GR, Gerace L (2015) Nuclear import of adenovirus DNA involves direct interaction of hexon with an N-terminal domain of the nucleoporin Nup214. J Virol 89:1719–1730PubMedGoogle Scholar
  150. 150.
    Greber UF, Suomalainen M, Stidwill RP, Boucke K, Ebersold MW, Helenius A (1997) The role of the nuclear pore complex in adenovirus DNA entry. EMBO J 16:5998–6007PubMedPubMedCentralGoogle Scholar
  151. 151.
    Strunze S, Engelke MF, Wang IH, Puntener D, Boucke K, Schleich S, Way M, Schoenenberger P, Burckhardt CJ, Greber UF (2011) Kinesin-1-mediated capsid disassembly and disruption of the nuclear pore complex promote virus infection. Cell Host Microbe 10:210–223PubMedGoogle Scholar
  152. 152.
    Trotman LC, Mosberger N, Fornerod M, Stidwill RP, Greber UF (2001) Import of adenovirus DNA involves the nuclear pore complex receptor CAN/Nup214 and histone H1. Nat Cell Biol 3:1092–1100PubMedGoogle Scholar
  153. 153.
    Liu L, Cooper T, Howley PM, Hayball JD (2014) From crescent to mature virion: Vaccinia virus assembly and maturation. Viruses 6:3787–3808PubMedPubMedCentralGoogle Scholar
  154. 154.
    Byrd CM, Hruby DE (2006) Vaccinia virus proteolysis – a review. Rev Med Virol 16:187–202PubMedGoogle Scholar
  155. 155.
    Marion S, San Martín C, Siber A (2017) Role of condensing particles in polymer confinement: a model for virus-packed “minichromosomes”. Biophys J 113:1643–1653PubMedPubMedCentralGoogle Scholar
  156. 156.
    Milrot E, Shimoni E, Dadosh T, Rechav K, Unger T, Van Etten JL, Minsky A (2017) Structural studies demonstrating a bacteriophage-like replication cycle of the eukaryote-infecting Paramecium bursaria chlorella virus-1. PLoS Pathog 13:e1006562PubMedPubMedCentralGoogle Scholar
  157. 157.
    Griffin DE (2013) Alphaviruses. In: Knipe DM, Howley PM (eds) Fields virology, vol 1. Wolters Kluwer/Lippincott Williams & Wilkins Health, Philadelphia, PA, pp 651–686Google Scholar
  158. 158.
    Lindenbach BD, Murray CL, Thiel H-J, Rice CM (2013) Flaviviridae. In: Knipe DM, Howley PM (eds) Fields virology, vol 1. Wolters Kluwer/Lippincott Williams & Wilkins Health, Philadelphia, PA, pp 712–746Google Scholar
  159. 159.
    Jose J, Snyder JE, Kuhn RJ (2009) A structural and functional perspective of alphavirus replication and assembly. Future Microbiol 4:837–856PubMedPubMedCentralGoogle Scholar
  160. 160.
    Pierson TC, Diamond MS (2012) Degrees of maturity: the complex structure and biology of flaviviruses. Curr Opin Virol 2:168–175PubMedPubMedCentralGoogle Scholar
  161. 161.
    Ferlenghi I, Gowen B, de Haas F, Mancini EJ, Garoff H, Sjoberg M, Fuller SD (1998) The first step: activation of the Semliki Forest virus spike protein precursor causes a localized conformational change in the trimeric spike. J Mol Biol 283:71–81PubMedGoogle Scholar
  162. 162.
    Mancini EJ, Clarke M, Gowen BE, Rutten T, Fuller SD (2000) Cryo-electron microscopy reveals the functional organization of an enveloped virus, Semliki Forest virus. Mol Cell 5:255–266PubMedGoogle Scholar
  163. 163.
    Mukhopadhyay S, Zhang W, Gabler S, Chipman PR, Strauss EG, Strauss JH, Baker TS, Kuhn RJ, Rossmann MG (2006) Mapping the structure and function of the E1 and E2 glycoproteins in alphaviruses. Structure 14:63–73PubMedPubMedCentralGoogle Scholar
  164. 164.
    Pletnev SV, Zhang W, Mukhopadhyay S, Fisher BR, Hernandez R, Brown DT, Baker TS, Rossmann MG, Kuhn RJ (2001) Locations of carbohydrate sites on alphavirus glycoproteins show that E1 forms an icosahedral scaffold. Cell 105:127–136PubMedPubMedCentralGoogle Scholar
  165. 165.
    Zhang W, Mukhopadhyay S, Pletnev SV, Baker TS, Kuhn RJ, Rossmann MG (2002) Placement of the structural proteins in Sindbis virus. J Virol 76:11645–11658PubMedPubMedCentralGoogle Scholar
  166. 166.
    Yap ML, Klose T, Urakami A, Hasan SS, Akahata W, Rossmann MG (2017) Structural studies of Chikungunya virus maturation. Proc Natl Acad Sci U S A 114:13703–13707PubMedPubMedCentralGoogle Scholar
  167. 167.
    Kielian M, Chanel-Vos C, Liao M (2010) Alphavirus entry and membrane fusion. Viruses 2:796–825PubMedPubMedCentralGoogle Scholar
  168. 168.
    Zhang W, Chipman PR, Corver J, Johnson PR, Zhang Y, Mukhopadhyay S, Baker TS, Strauss JH, Rossmann MG, Kuhn RJ (2003a) Visualization of membrane protein domains by cryo-electron microscopy of dengue virus. Nat Struct Biol 10(11):907PubMedPubMedCentralGoogle Scholar
  169. 169.
    Zhang Y, Corver J, Chipman PR, Zhang W, Pletnev SV, Sedlak D, Baker TS, Strauss JH, Kuhn RJ, Rossmann MG (2003b) Structures of immature flavivirus particles. EMBO J 22:2604–2613PubMedPubMedCentralGoogle Scholar
  170. 170.
    Kostyuchenko VA, Zhang Q, Tan JL, Ng TS, Lok SM (2013) Immature and mature dengue serotype 1 virus structures provide insight into the maturation process. J Virol 87:7700–7707PubMedPubMedCentralGoogle Scholar
  171. 171.
    Li L, Lok SM, Yu IM, Zhang Y, Kuhn RJ, Chen J, Rossmann MG (2008) The flavivirus precursor membrane-envelope protein complex: structure and maturation. Science 319:1830–1834PubMedGoogle Scholar
  172. 172.
    Yu IM, Zhang W, Holdaway HA, Li L, Kostyuchenko VA, Chipman PR, Kuhn RJ, Rossmann MG, Chen J (2008) Structure of the immature dengue virus at low pH primes proteolytic maturation. Science 319:1834–1837PubMedPubMedCentralGoogle Scholar
  173. 173.
    Kuhn RJ, Zhang W, Rossmann MG, Pletnev SV, Corver J, Lenches E, Jones CT, Mukhopadhyay S, Chipman PR, Strauss EG, Baker TS, Strauss JH (2002) Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell 108:717–725PubMedPubMedCentralGoogle Scholar
  174. 174.
    Zhang X, Ge P, Yu X, Brannan JM, Bi G, Zhang Q, Schein S, Zhou ZH (2013) Cryo-EM structure of the mature dengue virus at 3.5-A resolution. Nat Struct Mol Biol 20:105–110PubMedGoogle Scholar
  175. 175.
    Plevka P, Battisti AJ, Junjhon J, Winkler DC, Holdaway HA, Keelapang P, Sittisombut N, Kuhn RJ, Steven AC, Rossmann MG (2011) Maturation of flaviviruses starts from one or more icosahedrally independent nucleation centres. EMBO Rep 12:602–606PubMedPubMedCentralGoogle Scholar
  176. 176.
    Zicari S, Arakelyan A, Fitzgerald W, Zaitseva E, Chernomordik LV, Margolis L, Grivel JC (2016) Evaluation of the maturation of individual Dengue virions with flow virometry. Virology 488:20–27PubMedGoogle Scholar
  177. 177.
    Goff SP (2013) Retroviridae. In: Knipe DM, Howley PM (eds) Fields virology, vol 2. Wolters Kluwer/Lippincott Williams & Wilkins Health, Philadelphia, PA, pp 1424–1473Google Scholar
  178. 178.
    Freed EO (2015) HIV-1 assembly, release and maturation. Nat Rev Microbiol 13:484–496PubMedGoogle Scholar
  179. 179.
    Briggs JA, Simon MN, Gross I, Krausslich HG, Fuller SD, Vogt VM, Johnson MC (2004) The stoichiometry of Gag protein in HIV-1. Nat Struct Mol Biol 11:672–675PubMedGoogle Scholar
  180. 180.
    Briggs JA, Riches JD, Glass B, Bartonova V, Zanetti G, Krausslich HG (2009) Structure and assembly of immature HIV. Proc Natl Acad Sci U S A 106:11090–11095PubMedPubMedCentralGoogle Scholar
  181. 181.
    Schur FK, Hagen WJ, Rumlova M, Ruml T, Muller B, Krausslich HG, Briggs JA (2015) Structure of the immature HIV-1 capsid in intact virus particles at 8.8 A resolution. Nature 517:505–508PubMedGoogle Scholar
  182. 182.
    Mattei S, Schur FK, Briggs JA (2016a) Retrovirus maturation-an extraordinary structural transformation. Curr Opin Virol 18:27–35PubMedGoogle Scholar
  183. 183.
    Lee SK, Potempa M, Swanstrom R (2012) The choreography of HIV-1 proteolytic processing and virion assembly. J Biol Chem 287:40867–40874PubMedPubMedCentralGoogle Scholar
  184. 184.
    Fontana J, Jurado KA, Cheng N, Ly NL, Fuchs JR, Gorelick RJ, Engelman AN, Steven AC (2015) Distribution and redistribution of HIV-1 nucleocapsid protein in immature, mature, and integrase-inhibited virions: a role for integrase in maturation. J Virol 89:9765–9780PubMedPubMedCentralGoogle Scholar
  185. 185.
    Cardone G, Purdy JG, Cheng N, Craven RC, Steven AC (2009) Visualization of a missing link in retrovirus capsid assembly. Nature 457:694–698PubMedPubMedCentralGoogle Scholar
  186. 186.
    Gres AT, Kirby KA, KewalRamani VN, Tanner JJ, Pornillos O, Sarafianos SG (2015) Structural virology: X-ray crystal structures of native HIV-1 capsid protein reveal conformational variability. Science 349:99–103PubMedPubMedCentralGoogle Scholar
  187. 187.
    Pornillos O, Ganser-Pornillos BK, Yeager M (2011) Atomic-level modelling of the HIV capsid. Nature 469:424–427PubMedPubMedCentralGoogle Scholar
  188. 188.
    Zhao G, Perilla JR, Yufenyuy EL, Meng X, Chen B, Ning J, Ahn J, Gronenborn AM, Schulten K, Aiken C, Zhang P (2013) Mature HIV-1 capsid structure by cryo-electron microscopy and all-atom molecular dynamics. Nature 497:643–646PubMedPubMedCentralGoogle Scholar
  189. 189.
    Ganser BK, Li S, Klishko VY, Finch JT, Sundquist WI (1999) Assembly and analysis of conical models for the HIV-1 core. Science 283:80–83PubMedGoogle Scholar
  190. 190.
    Mattei S, Glass B, Hagen WJ, Krausslich HG, Briggs JA (2016b) The structure and flexibility of conical HIV-1 capsids determined within intact virions. Science 354:1434–1437PubMedGoogle Scholar
  191. 191.
    Lanman J, Lam TT, Emmett MR, Marshall AG, Sakalian M, Prevelige PE Jr (2004) Key interactions in HIV-1 maturation identified by hydrogen-deuterium exchange. Nat Struct Mol Biol 11:676–677PubMedGoogle Scholar
  192. 192.
    Lanman J, Lam TT, Barnes S, Sakalian M, Emmett MR, Marshall AG, Prevelige PE Jr (2003) Identification of novel interactions in HIV-1 capsid protein assembly by high-resolution mass spectrometry. J Mol Biol 325:759–772PubMedGoogle Scholar
  193. 193.
    Monroe EB, Kang S, Kyere SK, Li R, Prevelige PE Jr (2010) Hydrogen/deuterium exchange analysis of HIV-1 capsid assembly and maturation. Structure 18:1483–1491PubMedPubMedCentralGoogle Scholar
  194. 194.
    Hanne J, Gottfert F, Schimer J, Anders-Osswein M, Konvalinka J, Engelhardt J, Muller B, Hell SW, Krausslich HG (2016) Stimulated emission depletion nanoscopy reveals time-course of human immunodeficiency virus proteolytic maturation. ACS Nano 10:8215–8222PubMedGoogle Scholar
  195. 195.
    Kol N, Shi Y, Tsvitov M, Barlam D, Shneck RZ, Kay MS, Rousso I (2007) A stiffness switch in human immunodeficiency virus. Biophys J 92:1777–1783PubMedGoogle Scholar
  196. 196.
    Murakami T, Ablan S, Freed EO, Tanaka Y (2004) Regulation of human immunodeficiency virus type 1 Env-mediated membrane fusion by viral protease activity. J Virol 78:1026–1031PubMedPubMedCentralGoogle Scholar
  197. 197.
    Pang HB, Hevroni L, Kol N, Eckert DM, Tsvitov M, Kay MS, Rousso I (2013) Virion stiffness regulates immature HIV-1 entry. Retrovirology 10:4PubMedPubMedCentralGoogle Scholar
  198. 198.
    Wyma DJ, Jiang J, Shi J, Zhou J, Lineberger JE, Miller MD, Aiken C (2004) Coupling of human immunodeficiency virus type 1 fusion to virion maturation: a novel role of the gp41 cytoplasmic tail. J Virol 78:3429–3435PubMedPubMedCentralGoogle Scholar
  199. 199.
    Chojnacki J, Staudt T, Glass B, Bingen P, Engelhardt J, Anders M, Schneider J, Muller B, Hell SW, Krausslich HG (2012) Maturation-dependent HIV-1 surface protein redistribution revealed by fluorescence nanoscopy. Science 338:524–528PubMedGoogle Scholar
  200. 200.
    Chojnacki J, Waithe D, Carravilla P, Huarte N, Galiani S, Enderlein J, Eggeling C (2017) Envelope glycoprotein mobility on HIV-1 particles depends on the virus maturation state. Nat Commun 8:545PubMedPubMedCentralGoogle Scholar
  201. 201.
    Prangishvili D, Bamford DH, Forterre P, Iranzo J, Koonin EV, Krupovic M (2017) The enigmatic archaeal virosphere. Nat Rev Microbiol 15:724–739PubMedGoogle Scholar
  202. 202.
    Haring M, Vestergaard G, Rachel R, Chen L, Garrett RA, Prangishvili D (2005) Virology: independent virus development outside a host. Nature 436:1101–1102PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Macromolecular StructureCentro Nacional de Biotecnología (CNB-CSIC)MadridSpain

Personalised recommendations