Advertisement

Structure and Function of Negri Bodies

  • Jovan Nikolic
  • Cécile Lagaudrière-Gesbert
  • Nathalie Scrima
  • Danielle BlondelEmail author
  • Yves GaudinEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1215)

Abstract

Replication and assembly of many viruses occur in viral factories which are specialized intracellular compartments formed during viral infection. For rabies virus, those viral factories are called Negri bodies (NBs). NBs are cytoplasmic inclusion bodies in which viral RNAs (mRNAs as well as genomic and antigenomic RNAs) are synthesized. NBs are spherical, they can fuse together, and can reversibly deform when encountering a physical barrier. All these characteristics are similar to those of eukaryotic membrane-less liquid organelles which contribute to the compartmentalization of the cell interior. Indeed, the liquid nature of NBs has been confirmed by FRAP experiments. The co-expression of rabies virus nucleoprotein N and phosphoprotein P is sufficient to induce the formation of cytoplasmic inclusions recapitulating NBs properties. Remarkably, P and N have features similar to those of cellular proteins involved in liquid organelles formation: N is an RNA-binding protein and P contains intrinsically disordered domains. An overview of the literature indicates that formation of liquid viral factories by phase separation is probably common among Mononegavirales. This allows specific recruitment and concentration of viral proteins. Finally, as virus-associated molecular patterns recognized by cellular sensors of RNA virus replication are probably essentially present in the viral factory, there should be a subtle interplay (which remains to be characterized) between those liquid structures and the cellular proteins which trigger the innate immune response.

Keywords

Rabies virus Viral factory Negri bodies Liquid organelles Phase separation 

Abbreviations

aa

Amino acid

BHK21

Baby Hamster Kidney 21 cells

FAK

Focal adhesion kinase

FRAP

Fluorescence recovery after photobleaching

IDD

Intrinsically disordered domain

le

Leader RNA

NB

Negri body

PML

Promyelocytic leukemia protein

RABV

Rabies virus

RdRP

RNA-dependent RNA polymerase

RNP

Ribonucleoprotein

VSV

Vesicular stomatitis virus

Notes

Acknowledgments

This work was supported by the CNRS and by a grant from the Fondation pour la Recherche Médicale (FRM DEQ20120323711) to Y.G.

References

  1. 1.
    Netherton CL, Wileman T (2011) Virus factories, double membrane vesicles and viroplasm generated in animal cells. Curr Opin Virol 1(5):381–387.  https://doi.org/10.1016/j.coviro.2011.09.008 CrossRefPubMedGoogle Scholar
  2. 2.
    Novoa RR, Calderita G, Arranz R, Fontana J, Granzow H, Risco C (2005) Virus factories: associations of cell organelles for viral replication and morphogenesis. Biol Cell 97(2):147–172.  https://doi.org/10.1042/BC20040058 CrossRefPubMedGoogle Scholar
  3. 3.
    Chinchar VG, Hyatt A, Miyazaki T, Williams T (2009) Family Iridoviridae: poor viral relations no longer. Curr Top Microbiol Immunol 328:123–170PubMedGoogle Scholar
  4. 4.
    Risco C, Rodriguez JR, Lopez-Iglesias C, Carrascosa JL, Esteban M, Rodriguez D (2002) Endoplasmic reticulum-Golgi intermediate compartment membranes and vimentin filaments participate in vaccinia virus assembly. J Virol 76(4):1839–1855CrossRefGoogle Scholar
  5. 5.
    Rojo G, Garcia-Beato R, Vinuela E, Salas ML, Salas J (1999) Replication of African swine fever virus DNA in infected cells. Virology 257(2):524–536CrossRefGoogle Scholar
  6. 6.
    Schramm B, Locker JK (2005) Cytoplasmic organization of POXvirus DNA replication. Traffic 6(10):839–846.  https://doi.org/10.1111/j.1600-0854.2005.00324.x CrossRefPubMedGoogle Scholar
  7. 7.
    Wileman T (2007) Aggresomes and pericentriolar sites of virus assembly: cellular defense or viral design? Annu Rev Microbiol 61:149–167.  https://doi.org/10.1146/annurev.micro.57.030502.090836 CrossRefPubMedGoogle Scholar
  8. 8.
    Avila-Perez G, Rejas MT, Rodriguez D (2016) Ultrastructural characterization of membranous torovirus replication factories. Cell Microbiol 18(12):1691–1708.  https://doi.org/10.1111/cmi.12620 CrossRefPubMedGoogle Scholar
  9. 9.
    Harak C, Lohmann V (2015) Ultrastructure of the replication sites of positive-strand RNA viruses. Virology 479-480:418–433.  https://doi.org/10.1016/j.virol.2015.02.029 CrossRefPubMedGoogle Scholar
  10. 10.
    Kopek BG, Perkins G, Miller DJ, Ellisman MH, Ahlquist P (2007) Three-dimensional analysis of a viral RNA replication complex reveals a virus-induced mini-organelle. PLoS Biol 5(9):e220.  https://doi.org/10.1371/journal.pbio.0050220 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Heinrich BS, Cureton DK, Rahmeh AA, Whelan SP (2010) Protein expression redirects vesicular stomatitis virus RNA synthesis to cytoplasmic inclusions. PLoS Pathog 6(6):e1000958.  https://doi.org/10.1371/journal.ppat.1000958 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Lahaye X, Vidy A, Pomier C, Obiang L, Harper F, Gaudin Y, Blondel D (2009) Functional characterization of Negri bodies (NBs) in rabies virus-infected cells: Evidence that NBs are sites of viral transcription and replication. J Virol 83(16):7948–7958.  https://doi.org/10.1128/JVI.00554-09 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Menager P, Roux P, Megret F, Bourgeois JP, Le Sourd AM, Danckaert A, Lafage M, Prehaud C, Lafon M (2009) Toll-like receptor 3 (TLR3) plays a major role in the formation of rabies virus Negri Bodies. PLoS Pathog 5(2):e1000315.  https://doi.org/10.1371/journal.ppat.1000315 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hoenen T, Shabman RS, Groseth A, Herwig A, Weber M, Schudt G, Dolnik O, Basler CF, Becker S, Feldmann H (2012) Inclusion bodies are a site of ebolavirus replication. J Virol 86(21):11779–11788.  https://doi.org/10.1128/JVI.01525-12 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Rincheval V, Lelek M, Gault E, Bouillier C, Sitterlin D, Blouquit-Laye S, Galloux M, Zimmer C, Eleouet JF, Rameix-Welti MA (2017) Functional organization of cytoplasmic inclusion bodies in cells infected by respiratory syncytial virus. Nat Commun 8(1):563.  https://doi.org/10.1038/s41467-017-00655-9 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Negri A (1903) Contributo allo studio dell’ eziologia della rabia. Bol Soc Med Chir Pavia 2:88–114Google Scholar
  17. 17.
    Dietzgen RG, Kondo H, Goodin MM, Kurath G, Vasilakis N (2017) The family Rhabdoviridae: mono- and bipartite negative-sense RNA viruses with diverse genome organization and common evolutionary origins. Virus Res 227:158–170.  https://doi.org/10.1016/j.virusres.2016.10.010 CrossRefPubMedGoogle Scholar
  18. 18.
    Cureton DK, Massol RH, Saffarian S, Kirchhausen TL, Whelan SP (2009) Vesicular stomatitis virus enters cells through vesicles incompletely coated with clathrin that depend upon actin for internalization. PLoS Pathog 5(4):e1000394CrossRefGoogle Scholar
  19. 19.
    Johannsdottir HK, Mancini R, Kartenbeck J, Amato L, Helenius A (2009) Host cell factors and functions involved in vesicular stomatitis virus entry. J Virol 83(1):440–453CrossRefGoogle Scholar
  20. 20.
    Piccinotti S, Whelan SP (2016) Rabies internalizes into primary peripheral neurons via clathrin coated pits and requires fusion at the cell body. PLoS Pathog 12(7):e1005753.  https://doi.org/10.1371/journal.ppat.1005753 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Albertini AAV, Baquero E, Ferlin A, Gaudin Y (2012) Molecular and cellular aspects of rhabdovirus entry. Viruses 4(1):117–139CrossRefGoogle Scholar
  22. 22.
    Albertini AA, Ruigrok RW, Blondel D (2011) Rabies virus transcription and replication. Adv Virus Res 79:1–22.  https://doi.org/10.1016/B978-0-12-387040-7.00001-9 CrossRefPubMedGoogle Scholar
  23. 23.
    Blumberg BM, Leppert M, Kolakofsky D (1981) Interaction of VSV leader RNA and nucleocapsid protein may control VSV genome replication. Cell 23(3):837–845CrossRefGoogle Scholar
  24. 24.
    Albertini AA, Wernimont AK, Muziol T, Ravelli RB, Clapier CR, Schoehn G, Weissenhorn W, Ruigrok RW (2006) Crystal structure of the rabies virus nucleoprotein-RNA complex. Science 313(5785):360–363.  https://doi.org/10.1126/science.1125280 CrossRefPubMedGoogle Scholar
  25. 25.
    Emerson SU, Wagner RR (1973) L protein requirement for in vitro RNA synthesis by vesicular stomatitis virus. J Virol 12(6):1325–1335PubMedPubMedCentralGoogle Scholar
  26. 26.
    Hercyk N, Horikami SM, Moyer SA (1988) The vesicular stomatitis virus L protein possesses the mRNA methyltransferase activities. Virology 163(1):222–225CrossRefGoogle Scholar
  27. 27.
    Ogino T, Banerjee AK (2007) Unconventional mechanism of mRNA capping by the RNA-dependent RNA polymerase of vesicular stomatitis virus. Mol Cell 25(1):85–97.  https://doi.org/10.1016/j.molcel.2006.11.013 CrossRefPubMedGoogle Scholar
  28. 28.
    Hunt DM, Smith EF, Buckley DW (1984) Aberrant polyadenylation by a vesicular stomatitis virus mutant is due to an altered L protein. J Virol 52(2):515–521PubMedPubMedCentralGoogle Scholar
  29. 29.
    Liang B, Li Z, Jenni S, Rahmeh AA, Morin BM, Grant T, Grigorieff N, Harrison SC, Whelan SPJ (2015) Structure of the L protein of vesicular stomatitis virus from electron cryomicroscopy. Cell 162(2):314–327.  https://doi.org/10.1016/j.cell.2015.06.018 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Gerard FC, Ribeiro Ede A Jr, Leyrat C, Ivanov I, Blondel D, Longhi S, Ruigrok RW, Jamin M (2009) Modular organization of rabies virus phosphoprotein. J Mol Biol 388(5):978–996.  https://doi.org/10.1016/j.jmb.2009.03.061 CrossRefPubMedGoogle Scholar
  31. 31.
    Gupta AK, Blondel D, Choudhary S, Banerjee AK (2000) The phosphoprotein of rabies virus is phosphorylated by a unique cellular protein kinase and specific isomers of protein kinase C. J Virol 74(1):91–98CrossRefGoogle Scholar
  32. 32.
    Gigant B, Iseni F, Gaudin Y, Knossow M, Blondel D (2000) Neither phosphorylation nor the amino-terminal part of rabies virus phosphoprotein is required for its oligomerization. J Gen Virol 81. (Pt 7:1757–1761.  https://doi.org/10.1099/0022-1317-81-7-1757 CrossRefPubMedGoogle Scholar
  33. 33.
    Castel G, Chteoui M, Caignard G, Prehaud C, Mehouas S, Real E, Jallet C, Jacob Y, Ruigrok RW, Tordo N (2009) Peptides that mimic the amino-terminal end of the rabies virus phosphoprotein have antiviral activity. J Virol 83(20):10808–10820.  https://doi.org/10.1128/JVI.00977-09 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Chenik M, Schnell M, Conzelmann KK, Blondel D (1998) Mapping the interacting domains between the rabies virus polymerase and phosphoprotein. J Virol 72(3):1925–1930PubMedPubMedCentralGoogle Scholar
  35. 35.
    Mavrakis M, Iseni F, Mazza C, Schoehn G, Ebel C, Gentzel M, Franz T, Ruigrok RW (2003) Isolation and characterisation of the rabies virus N degrees-P complex produced in insect cells. Virology 305(2):406–414CrossRefGoogle Scholar
  36. 36.
    Leyrat C, Yabukarski F, Tarbouriech N, Ribeiro EA Jr, Jensen MR, Blackledge M, Ruigrok RW, Jamin M (2011) Structure of the vesicular stomatitis virus N(0)-P complex. PLoS Pathog 7(9):e1002248.  https://doi.org/10.1371/journal.ppat.1002248 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Ivanov I, Crépin T, Jamin M, Ruigrok RW (2010) Structure of the dimerization domain of the rabies virus phosphoprotein. J Virol 84(7):3707–3710.  https://doi.org/10.1128/JVI.02557-09 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Mavrakis M, McCarthy AA, Roche S, Blondel D, Ruigrok RW (2004) Structure and function of the C-terminal domain of the polymerase cofactor of rabies virus. J Mol Biol 343(4):819–831.  https://doi.org/10.1016/j.jmb.2004.08.071 CrossRefPubMedGoogle Scholar
  39. 39.
    Ribeiro Ede A Jr, Leyrat C, Gerard FC, Albertini AA, Falk C, Ruigrok RW, Jamin M (2009) Binding of rabies virus polymerase cofactor to recombinant circular nucleoprotein-RNA complexes. J Mol Biol 394(3):558–575.  https://doi.org/10.1016/j.jmb.2009.09.042 CrossRefPubMedGoogle Scholar
  40. 40.
    Jacob Y, Real E, Tordo N (2001) Functional interaction map of lyssavirus phosphoprotein: identification of the minimal transcription domains. J Virol 75(20):9613–9622.  https://doi.org/10.1128/JVI.75.20.9613-9622.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Green TJ, Luo M (2009) Structure of the vesicular stomatitis virus nucleocapsid in complex with the nucleocapsid-binding domain of the small polymerase cofactor, P. Proc Natl Acad Sci U S A 106(28):11713–11718.  https://doi.org/10.1073/pnas.0903228106 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Chelbi-Alix MK, Vidy A, El Bougrini J, Blondel D (2006) Rabies viral mechanisms to escape the IFN system: the viral protein P interferes with IRF-3, Stat1, and PML nuclear bodies. J Interf Cytokine Res 26(5):271–280.  https://doi.org/10.1089/jir.2006.26.271 CrossRefGoogle Scholar
  43. 43.
    Vidy A, Chelbi-Alix M, Blondel D (2005) Rabies virus P protein interacts with STAT1 and inhibits interferon signal transduction pathways. J Virol 79(22):14411–14420.  https://doi.org/10.1128/JVI.79.22.14411-14420.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Vidy A, El Bougrini J, Chelbi-Alix MK, Blondel D (2007) The nucleocytoplasmic rabies virus P protein counteracts interferon signaling by inhibiting both nuclear accumulation and DNA binding of STAT1. J Virol 81(8):4255–4263.  https://doi.org/10.1128/JVI.01930-06 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Blondel D, Regad T, Poisson N, Pavie B, Harper F, Pandolfi PP, De The H, Chelbi-Alix MK (2002) Rabies virus P and small P products interact directly with PML and reorganize PML nuclear bodies. Oncogene 21(52):7957–7970.  https://doi.org/10.1038/sj.onc.1205931 CrossRefPubMedGoogle Scholar
  46. 46.
    Blondel D, Kheddache S, Lahaye X, Dianoux L, Chelbi-Alix MK (2010) Resistance to rabies virus infection conferred by the PMLIV isoform. J Virol 84(20):10719–10726.  https://doi.org/10.1128/JVI.01286-10 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Brzozka K, Finke S, Conzelmann KK (2005) Identification of the rabies virus alpha/beta interferon antagonist: phosphoprotein P interferes with phosphorylation of interferon regulatory factor 3. J Virol 79(12):7673–7681.  https://doi.org/10.1128/JVI.79.12.7673-7681.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Jacob Y, Badrane H, Ceccaldi PE, Tordo N (2000) Cytoplasmic dynein LC8 interacts with lyssavirus phosphoprotein. J Virol 74(21):10217–10222CrossRefGoogle Scholar
  49. 49.
    Poisson N, Real E, Gaudin Y, Vaney MC, King S, Jacob Y, Tordo N, Blondel D (2001) Molecular basis for the interaction between rabies virus phosphoprotein P and the dynein light chain LC8: dissociation of dynein-binding properties and transcriptional functionality of P. J Gen Virol 82. (Pt 11:2691–2696.  https://doi.org/10.1099/0022-1317-82-11-2691 CrossRefPubMedGoogle Scholar
  50. 50.
    Raux H, Flamand A, Blondel D (2000) Interaction of the rabies virus P protein with the LC8 dynein light chain. J Virol 74(21):10212–10216CrossRefGoogle Scholar
  51. 51.
    Fouquet B, Nikolic J, Larrous F, Bourhy H, Wirblich C, Lagaudriere-Gesbert C, Blondel D (2015) Focal adhesion kinase is involved in rabies virus infection through its interaction with viral phosphoprotein P. J Virol 89(3):1640–1651.  https://doi.org/10.1128/JVI.02602-14 CrossRefPubMedGoogle Scholar
  52. 52.
    Oksayan S, Nikolic J, David CT, Blondel D, Jans DA, Moseley GW (2015) Identification of a role for nucleolin in rabies virus infection. J Virol 89(3):1939–1943.  https://doi.org/10.1128/JVI.03320-14 CrossRefPubMedGoogle Scholar
  53. 53.
    Tan GS, Preuss MA, Williams JC, Schnell MJ (2007) The dynein light chain 8 binding motif of rabies virus phosphoprotein promotes efficient viral transcription. Proc Natl Acad Sci U S A 104(17):7229–7234.  https://doi.org/10.1073/pnas.0701397104 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Kristensson K, Dastur DK, Manghani DK, Tsiang H, Bentivoglio M (1996) Rabies: interactions between neurons and viruses. A review of the history of Negri inclusion bodies. Neuropathol Appl Neurobiol 22(3):179–187CrossRefGoogle Scholar
  55. 55.
    Nikolic J, Le Bars R, Lama Z, Scrima N, Lagaudriere-Gesbert C, Gaudin Y, Blondel D (2017) Negri bodies are viral factories with properties of liquid organelles. Nat Commun 8(1):58.  https://doi.org/10.1038/s41467-017-00102-9 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Matsumoto S, Schneider LG, Kawai A, Yonezawa T (1974) Further studies on the replication of rabies and rabies-like viruses in organized cultures of mammalian neural tissues. J Virol 14(4):981–996PubMedPubMedCentralGoogle Scholar
  57. 57.
    Finke S, Brzozka K, Conzelmann KK (2004) Tracking fluorescence-labeled rabies virus: enhanced green fluorescent protein-tagged phosphoprotein P supports virus gene expression and formation of infectious particles. J Virol 78(22):12333–12343.  https://doi.org/10.1128/JVI.78.22.12333-12343.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Lahaye X, Vidy A, Fouquet B, Blondel D (2012) Hsp70 protein positively regulates rabies virus infection. J Virol 86(9):4743–4751.  https://doi.org/10.1128/JVI.06501-11 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Zhang J, Wu X, Zan J, Wu Y, Ye C, Ruan X, Zhou J (2013a) Cellular chaperonin CCTgamma contributes to rabies virus replication during infection. J Virol 87(13):7608–7621.  https://doi.org/10.1128/JVI.03186-12 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Zhang J, Ye C, Ruan X, Zan J, Xu Y, Liao M, Zhou J (2014) The chaperonin CCTalpha is required for efficient transcription and replication of rabies virus. Microbiol Immunol 58(10):590–599.  https://doi.org/10.1111/1348-0421.12186 CrossRefPubMedGoogle Scholar
  61. 61.
    Shin T, Weinstock D, Castro MD, Hamir AN, Wampler T, Walter M, Kim HY, Acland H (2004) Immunohistochemical localization of endothelial and inducible nitric oxide synthase within neurons of cattle with rabies. J Vet Med Sci 66(5):539–541CrossRefGoogle Scholar
  62. 62.
    Pollin R, Granzow H, Kollner B, Conzelmann KK, Finke S (2013) Membrane and inclusion body targeting of lyssavirus matrix proteins. Cell Microbiol 15(2):200–212.  https://doi.org/10.1111/cmi.12037 CrossRefPubMedGoogle Scholar
  63. 63.
    Banani SF, Lee HO, Hyman AA, Rosen MK (2017) Biomolecular condensates: organizers of cellular biochemistry. Nat Rev Mol Cell Biol 18(5):285–298.  https://doi.org/10.1038/nrm.2017.7 CrossRefPubMedGoogle Scholar
  64. 64.
    Brangwynne CP, Eckmann CR, Courson DS, Rybarska A, Hoege C, Gharakhani J, Julicher F, Hyman AA (2009) Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324(5935):1729–1732.  https://doi.org/10.1126/science.1172046 CrossRefGoogle Scholar
  65. 65.
    Courchaine EM, Lu A, Neugebauer KM (2016) Droplet organelles? EMBO J 35(15):1603–1612.  https://doi.org/10.15252/embj.201593517 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Uversky VN (2017) Intrinsically disordered proteins in overcrowded milieu: membrane-less organelles, phase separation, and intrinsic disorder. Curr Opin Struct Biol 44:18–30.  https://doi.org/10.1016/j.sbi.2016.10.015 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Handwerger KE, Cordero JA, Gall JG (2005) Cajal bodies, nucleoli, and speckles in the Xenopus oocyte nucleus have a low-density, sponge-like structure. Mol Biol Cell 16(1):202–211.  https://doi.org/10.1091/mbc.E04-08-0742 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Brangwynne CP, Mitchison TJ, Hyman AA (2011) Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes. Proc Natl Acad Sci U S A 108(11):4334–4339.  https://doi.org/10.1073/pnas.1017150108 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Feric M, Vaidya N, Harmon TS, Mitrea DM, Zhu L, Richardson TM, Kriwacki RW, Pappu RV, Brangwynne CP (2016) Coexisting liquid phases underlie nucleolar subcompartments. Cell 165(7):1686–1697.  https://doi.org/10.1016/j.cell.2016.04.047 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Marzahn MR, Marada S, Lee J, Nourse A, Kenrick S, Zhao H, Ben-Nissan G, Kolaitis RM, Peters JL, Pounds S, Errington WJ, Prive GG, Taylor JP, Sharon M, Schuck P, Ogden SK, Mittag T (2016) Higher-order oligomerization promotes localization of SPOP to liquid nuclear speckles. EMBO J 35(12):1254–1275.  https://doi.org/10.15252/embj.201593169 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Jain S, Wheeler JR, Walters RW, Agrawal A, Barsic A, Parker R (2016) ATPase-modulated stress granules contain a diverse proteome and substructure. Cell 164(3):487–498.  https://doi.org/10.1016/j.cell.2015.12.038 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Nikolic J, Civas A, Lama Z, Lagaudriere-Gesbert C, Blondel D (2016) Rabies virus infection induces the formation of stress granules closely connected to the viral factories. PLoS Pathog 12(10):e1005942.  https://doi.org/10.1371/journal.ppat.1005942 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Nielsen FC, Hansen HT, Christiansen J (2016) RNA assemblages orchestrate complex cellular processes. BioEssays 38(7):674–681.  https://doi.org/10.1002/bies.201500175 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Berry J, Weber SC, Vaidya N, Haataja M, Brangwynne CP (2015) RNA transcription modulates phase transition-driven nuclear body assembly. Proc Natl Acad Sci U S A 112(38):E5237–E5245.  https://doi.org/10.1073/pnas.1509317112 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Elbaum-Garfinkle S, Kim Y, Szczepaniak K, Chen CC, Eckmann CR, Myong S, Brangwynne CP (2015) The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics. Proc Natl Acad Sci U S A 112(23):7189–7194.  https://doi.org/10.1073/pnas.1504822112 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Nott TJ, Petsalaki E, Farber P, Jervis D, Fussner E, Plochowietz A, Craggs TD, Bazett-Jones DP, Pawson T, Forman-Kay JD, Baldwin AJ (2015) Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol Cell 57(5):936–947.  https://doi.org/10.1016/j.molcel.2015.01.013 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Tompa P, Fuxreiter M (2008) Fuzzy complexes: polymorphism and structural disorder in protein-protein interactions. Trends Biochem Sci 33(1):2–8.  https://doi.org/10.1016/j.tibs.2007.10.003 CrossRefPubMedGoogle Scholar
  78. 78.
    Schudt G, Kolesnikova L, Dolnik O, Sodeik B, Becker S (2013) Live-cell imaging of Marburg virus-infected cells uncovers actin-dependent transport of nucleocapsids over long distances. Proc Natl Acad Sci U S A 110(35):14402–14407.  https://doi.org/10.1073/pnas.1307681110 CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Derdowski A, Peters TR, Glover N, Qian R, Utley TJ, Burnett A, Williams JV, Spearman P, Crowe JE Jr (2008) Human metapneumovirus nucleoprotein and phosphoprotein interact and provide the minimal requirements for inclusion body formation. J Gen Virol 89(Pt 11):2698–2708.  https://doi.org/10.1099/vir.0.2008/004051-0 CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Fearns R, Young DF, Randall RE (1994) Evidence that the paramyxovirus simian virus 5 can establish quiescent infections by remaining inactive in cytoplasmic inclusion bodies. J Gen Virol 75. (Pt 12:3525–3539.  https://doi.org/10.1099/0022-1317-75-12-3525 CrossRefPubMedGoogle Scholar
  81. 81.
    Zhang S, Chen L, Zhang G, Yan Q, Yang X, Ding B, Tang Q, Sun S, Hu Z, Chen M (2013b) An amino acid of human parainfluenza virus type 3 nucleoprotein is critical for template function and cytoplasmic inclusion body formation. J Virol 87(22):12457–12470.  https://doi.org/10.1128/JVI.01565-13 CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Charlier CM, Wu YJ, Allart S, Malnou CE, Schwemmle M, Gonzalez-Dunia D (2013) Analysis of borna disease virus trafficking in live infected cells by using a virus encoding a tetracysteine-tagged p protein. J Virol 87(22):12339–12348.  https://doi.org/10.1128/JVI.01127-13 CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Wichgers Schreur PJ, Kortekaas J (2016) Single-molecule FISH reveals non-selective packaging of rift valley fever virus genome segments. PLoS Pathog 12(8):e1005800.  https://doi.org/10.1371/journal.ppat.1005800 CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Chaikeeratisak V, Nguyen K, Khanna K, Brilot AF, Erb ML, Coker JK, Vavilina A, Newton GL, Buschauer R, Pogliano K, Villa E, Agard DA, Pogliano J (2017) Assembly of a nucleus-like structure during viral replication in bacteria. Science 355(6321):194–197.  https://doi.org/10.1126/science.aal2130 CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Oh SW, Onomoto K, Wakimoto M, Onoguchi K, Ishidate F, Fujiwara T, Yoneyama M, Kato H, Fujita T (2016) Leader-containing uncapped viral transcript activates RIG-I in antiviral stress granules. PLoS Pathog 12(2):e1005444.  https://doi.org/10.1371/journal.ppat.1005444 CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Dinh PX, Beura LK, Das PB, Panda D, Das A, Pattnaik AK (2013) Induction of stress granule-like structures in vesicular stomatitis virus-infected cells. J Virol 87(1):372–383.  https://doi.org/10.1128/JVI.02305-12 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-SaclayGif-sur-Yvette cedexFrance

Personalised recommendations