Membrane-Containing Icosahedral Bacteriophage PRD1: The Dawn of Viral Lineages

  • Hanna M. OksanenEmail author
  • Nicola G. A. AbresciaEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1215)


Membrane-containing enterobacterial phage PRD1 was isolated from sewage more than 40 years ago. At that time none would have expected the impact that unravelling its biology would have on modern virology and on the way we understand virus assembly, evolution and classification today. PRD1 structural analyses have provided a framework for understanding some aspects of virus evolution—introducing the concept of “viral lineages”—where the three-dimensional structures of virus capsids represent the fingerprint for evolutionary relationship which cannot be traced from the sequence data. In this review we summarise those findings that have led to the notion of viral lineages and the multidisciplinary efforts made in elucidating PRD1 life cycle. These studies have rendered PRD1 a model system not only for the family Tectiviridae to which it belongs, but more generally to complex DNA viruses enclosing a membrane vesicle beneath the capsid shell.


Viral lineage PRD1 Adenovirus 3D structure Bacteriophage Tectiviridae Assembly Packaging DNA ejection Uncoating 



We are grateful to Stavros Azinas and Ralf Richter for the collaborative work on virus mechanics and Dennis Bamford for insightful comments on the review. We also thank Juliet Cowper for language editing. This study was supported by the Spanish Ministerio de Economía y Competitividad (MINECO/FEDER BFU2015-64541-R), by the Basque Departamento de Desarrollo Económico e Infraestructuras (Ref: 37-2017-00036) and Departamento de Educación, Política Lingüística y Cultura (Ref: PRE_2016_2_0151) to N.G.A.A. H.M.O was supported by the University of Helsinki and Academy of Finland funding for Instruct-FI research infrastructure and Biomolecular Complex Purification (BioComplex) core facility. We thank MINECO for the Severo Ochoa Excellence Accreditation to the CIC bioGUNE (SEV-2016-0644).


  1. 1.
    Espejo RT, Canelo ES (1968) Properties of bacteriophage PM2: a lipid-containing bacterial virus. Virology 34:738–747PubMedGoogle Scholar
  2. 2.
    Spencer R (1963) Bacterial viruses in the sea. In: Oppenheimer CH (ed) Symposium on marine microbiology. Charles C Thomas, Springfield, pp 350–365Google Scholar
  3. 3.
    Kivelä HM, Kalkkinen N, Bamford DH (2002) Bacteriophage PM2 has a protein capsid surrounding a spherical proteinaceous lipid core. J Virol 76:8169–8178PubMedPubMedCentralGoogle Scholar
  4. 4.
    Abrescia NG, Grimes JM, Kivelä HM, Assenberg R, Sutton GC, Butcher SJ, Bamford JK, Bamford DH, Stuart DI (2008) Insights into virus evolution and membrane biogenesis from the structure of the marine lipid-containing bacteriophage PM2. Mol Cell 31:749–761PubMedGoogle Scholar
  5. 5.
    Peralta B, Gil-Carton D, Castaño-Díez D, Bertin A, Boulogne C, Oksanen HM, Bamford DH, Abrescia NG (2013) Mechanism of membranous tunnelling nanotube formation in viral genome delivery. PLoS Biol 11:e1001667PubMedPubMedCentralGoogle Scholar
  6. 6.
    Oksanen HM, ICTV Report C (2017) ICTV virus taxonomy profile: Corticoviridae. J Gen Virol 98:888–889PubMedPubMedCentralGoogle Scholar
  7. 7.
    Leigh B, Breitbart M, Oksanen HM, Bamford DH, Dishaw L (2018) Genome sequence of PM-like phage Cr39582 induced from Pseudoalteromonas sp. isolate from gut of Ciona robusta. Genome Announc 6:e00368-18PubMedPubMedCentralGoogle Scholar
  8. 8.
    Kivelä HM, Mannisto RH, Kalkkinen N, Bamford DH (1999) Purification and protein composition of PM2, the first lipid-containing bacterial virus to be isolated. Virology 262:364–374PubMedGoogle Scholar
  9. 9.
    Olsen RH, Siak JS, Gray RH (1974) Characteristics of PRD1, a plasmid-dependent broad host range DNA bacteriophage. J Virol 14:689–699PubMedPubMedCentralGoogle Scholar
  10. 10.
    Oksanen HM, Bamford DH (2012) Tectiviridae/PRD1 chapter. In: King MJAAMQ, Carstens EB, Lefkowitz EJ (eds) Virus taxonomy: ninth report of the international committee on taxonomy of viruses. Elsevier, London, pp 317–322Google Scholar
  11. 11.
    Abrescia NG, Cockburn JJ, Grimes JM, Sutton GC, Diprose JM, Butcher SJ, Fuller SD, San Martin C, Burnett RM, Stuart DI et al (2004) Insights into assembly from structural analysis of bacteriophage PRD1. Nature 432:68–74PubMedGoogle Scholar
  12. 12.
    Gillis A, Mahillon J (2014) Prevalence, genetic diversity, and host range of tectiviruses among members of the Bacillus cereus group. Appl Environ Microbiol 80:4138–4152PubMedPubMedCentralGoogle Scholar
  13. 13.
    Caldentey J, Blanco L, Savilahti H, Bamford DH, Salas M (1992) In vitro replication of bacteriophage PRD1 DNA. Metal activation of protein-primed initiation and DNA elongation. Nucleic Acids Res 20:3971–3976PubMedPubMedCentralGoogle Scholar
  14. 14.
    Bamford D, McGraw T, MacKenzie G, Mindich L (1983) Identification of a protein bound to the termini of bacteriophage PRD1 DNA. J Virol 47:311–316PubMedPubMedCentralGoogle Scholar
  15. 15.
    Savilahti H, Bamford DH (1993) Protein-primed DNA replication: role of inverted terminal repeats in the Escherichia coli bacteriophage PRD1 life cycle. J Virol 67:4696–4703PubMedPubMedCentralGoogle Scholar
  16. 16.
    Cockburn JJ, Abrescia NG, Grimes JM, Sutton GC, Diprose JM, Benevides JM, Thomas GJ Jr, Bamford JK, Bamford DH, Stuart DI (2004) Membrane structure and interactions with protein and DNA in bacteriophage PRD1. Nature 432:122–125PubMedGoogle Scholar
  17. 17.
    Hong C, Oksanen HM, Liu X, Jakana J, Bamford DH, Chiu W (2014) A structural model of the genome packaging process in a membrane-containing double stranded DNA virus. PLoS Biol 12:e1002024PubMedPubMedCentralGoogle Scholar
  18. 18.
    Laurinavicius S, Bamford DH, Somerharju P (2007) Transbilayer distribution of phospholipids in bacteriophage membranes. Biochim Biophys Acta 1768:2568–2577PubMedGoogle Scholar
  19. 19.
    Santos-Pérez I, Oksanen HM, Bamford DH, Goni FM, Reguera D, Abrescia NGA (2017) Membrane-assisted viral DNA ejection. BBA-Gen Subjects 1861:664–672Google Scholar
  20. 20.
    Bamford JK, Bamford DH (1991) Large-scale purification of membrane-containing bacteriophage PRD1 and its subviral particles. Virology 181:348–352PubMedGoogle Scholar
  21. 21.
    Eskelin K, Lampi M, Meier F, Moldenhauer E, Bamford DH, Oksanen HM (2016) Asymmetric flow field flow fractionation methods for virus purification. J Chromatogr A 1469:108–119PubMedGoogle Scholar
  22. 22.
    Mindich L, Bamford D, Goldthwaite C, Laverty M, Mackenzie G (1982) Isolation of nonsense mutants of lipid-containing bacteriophage PRD1. J Virol 44:1013–1020PubMedPubMedCentralGoogle Scholar
  23. 23.
    Oksanen HM, Domanska A, Bamford DH (2012) Monolithic ion exchange chromatographic methods for virus purification. Virology 434:271–277PubMedGoogle Scholar
  24. 24.
    Karhu NJ, Ziedaite G, Bamford DH, Bamford JK (2007) Efficient DNA packaging of bacteriophage PRD1 requires the unique vertex protein P6. J Virol 81:2970–2979PubMedPubMedCentralGoogle Scholar
  25. 25.
    Ziedaite G, Kivelä HM, Bamford JK, Bamford DH (2009) Purified membrane-containing procapsids of bacteriophage PRD1 package the viral genome. J Mol Biol 386:637–647PubMedGoogle Scholar
  26. 26.
    Benson SD, Bamford JK, Bamford DH, Burnett RM (1999) Viral evolution revealed by bacteriophage PRD1 and human adenovirus coat protein structures. Cell 98:825–833PubMedPubMedCentralGoogle Scholar
  27. 27.
    Bamford DH, Burnett RM, Stuart DI (2002) Evolution of viral structure. Theor Popul Biol 61:461–470PubMedGoogle Scholar
  28. 28.
    Abad-Zapatero C, Abdel-Meguid SS, Johnson JE, Leslie AGW, Rayment I, Rossmann MG, Suck D, Tsukihara T (1980) Structure of southern bean mosaic virus at 2.8 Å resolution. Nature 286:33–39PubMedGoogle Scholar
  29. 29.
    Hogle JM, Chow M, Filman DJ (1985) Three-dimensional structure of poliovirus at 2.9 Å resolution. Science 229:1358–1365PubMedGoogle Scholar
  30. 30.
    Rossmann MG, Arnold E, Erickson JW, Frankenberger EA, Griffith JP, Hecht HJ, Johnson JE, Kamer G, Luo M, Mosser AG et al (1985) Structure of a human common cold virus and functional relationship to other picornaviruses. Nature 317:145–153PubMedGoogle Scholar
  31. 31.
    Nandhagopal N, Simpson AA, Gurnon JR, Yan X, Baker TS, Graves MV, Van Etten JL, Rossmann MG (2002) The structure and evolution of the major capsid protein of a large, lipid-containing DNA virus. Proc Natl Acad Sci USA 99:14758–14763PubMedGoogle Scholar
  32. 32.
    Rice G, Tang L, Stedman K, Roberto F, Spuhler J, Gillitzer E, Johnson JE, Douglas T, Young M (2004) The structure of a thermophilic archaeal virus shows a double-stranded DNA viral capsid type that spans all domains of life. Proc Natl Acad Sci USA 101:7716–7720PubMedGoogle Scholar
  33. 33.
    Butcher SJ, Bamford DH, Fuller SD (1995) DNA packaging orders the membrane of bacteriophage PRD1. EMBO J 14:6078–6086PubMedPubMedCentralGoogle Scholar
  34. 34.
    Athappilly FK, Murali R, Rux JJ, Cai Z, Burnett RM (1994) The refined crystal structure of hexon, the major coat protein of adenovirus type 2, at 2.9 A resolution. J Mol Biol 242:430–455PubMedGoogle Scholar
  35. 35.
    San Martin C, Burnett RM, de Haas F, Heinkel R, Rutten T, Fuller SD, Butcher SJ, Bamford DH (2001) Combined EM/X-ray imaging yields a quasi-atomic model of the adenovirus-related bacteriophage PRD1 and shows key capsid and membrane interactions. Structure 9:917–930Google Scholar
  36. 36.
    San Martin C, Huiskonen JT, Bamford JK, Butcher SJ, Fuller SD, Bamford DH, Burnett RM (2002) Minor proteins, mobile arms and membrane-capsid interactions in the bacteriophage PRD1 capsid. Nat Struct Biol 9:756–763PubMedGoogle Scholar
  37. 37.
    Liu H, Jin L, Koh SB, Atanasov I, Schein S, Wu L, Zhou ZH (2010) Atomic structure of human adenovirus by cryo-EM reveals interactions among protein networks. Science 329:1038–1043PubMedPubMedCentralGoogle Scholar
  38. 38.
    Huiskonen JT, Manole V, Butcher SJ (2007) Tale of two spikes in bacteriophage PRD1. Proc Natl Acad Sci USA 104:6666–6671PubMedGoogle Scholar
  39. 39.
    Jaatinen ST, Viitanen SJ, Bamford DH, Bamford JK (2004) Integral membrane protein P16 of bacteriophage PRD1 stabilizes the adsorption vertex structure. J Virol 78:9790–9797PubMedPubMedCentralGoogle Scholar
  40. 40.
    Xu L, Benson SD, Butcher SJ, Bamford DH, Burnett RM (2003) The receptor binding protein P2 of PRD1, a virus targeting antibiotic-resistant bacteria, has a novel fold suggesting multiple functions. Structure 11:309–322PubMedGoogle Scholar
  41. 41.
    Gowen B, Bamford JK, Bamford DH, Fuller SD (2003) The tailless icosahedral membrane virus PRD1 localizes the proteins involved in genome packaging and injection at a unique vertex. J Virol 77:7863–7871PubMedPubMedCentralGoogle Scholar
  42. 42.
    Strömsten NJ, Bamford DH, Bamford JK (2003) The unique vertex of bacterial virus PRD1 is connected to the viral internal membrane. J Virol 77:6314–6321PubMedPubMedCentralGoogle Scholar
  43. 43.
    Yan X, Olson NH, Van Etten JL, Bergoin M, Rossmann MG, Baker TS (2000) Structure and assembly of large lipid-containing dsDNA viruses. Nat Struct Biol 7:101–103PubMedPubMedCentralGoogle Scholar
  44. 44.
    Bahar MW, Graham SC, Stuart DI, Grimes JM (2011) Insights into the evolution of a complex virus from the crystal structure of vaccinia virus D13. Structure 19:1011–1020PubMedPubMedCentralGoogle Scholar
  45. 45.
    Abrescia NG, Bamford DH, Grimes JM, Stuart DI (2012) Structure unifies the viral universe. Annu Rev Biochem 81:795–822PubMedGoogle Scholar
  46. 46.
    Suttle CA (2007) Marine viruses—major players in the global ecosystem. Nat Rev Microbiol 5:801–812PubMedGoogle Scholar
  47. 47.
    Baker ML, Jiang W, Rixon FJ, Chiu W (2005) Common ancestry of herpesviruses and tailed DNA bacteriophages. J Virol 79:14967–14970PubMedPubMedCentralGoogle Scholar
  48. 48.
    Jiang W, Li Z, Zhang Z, Baker ML, Prevelige PE Jr, Chiu W (2003) Coat protein fold and maturation transition of bacteriophage P22 seen at subnanometer resolutions. Nat Struct Biol 10:131–135PubMedGoogle Scholar
  49. 49.
    Khayat R, Tang L, Larson ET, Lawrence CM, Young M, Johnson JE (2005) Structure of an archaeal virus capsid protein reveals a common ancestry to eukaryotic and bacterial viruses. Proc Natl Acad Sci USA 102:18944–18949PubMedGoogle Scholar
  50. 50.
    Yan X, Yu Z, Zhang P, Battisti AJ, Holdaway HA, Chipman PR, Bajaj C, Bergoin M, Rossmann MG, Baker TS (2009) The capsid proteins of a large, icosahedral dsDNA virus. J Mol Biol 385:1287–1299PubMedGoogle Scholar
  51. 51.
    Zhang X, Xiang Y, Dunigan DD, Klose T, Chipman PR, Van Etten JL, Rossmann MG (2011) Three-dimensional structure and function of the Paramecium bursaria chlorella virus capsid. Proc Natl Acad Sci USA 108:14837–14842PubMedGoogle Scholar
  52. 52.
    Sinclair RM, Ravantti JJ, Bamford DH (2017) Nucleic and amino acid sequences support structure-based viral classification. J Virol 91:e02275–e02216PubMedPubMedCentralGoogle Scholar
  53. 53.
    Lokareddy RK, Sankhala RS, Roy A, Afonine PV, Motwani T, Teschke CM, Parent KN, Cingolani G (2017) Portal protein functions akin to a DNA-sensor that couples genome-packaging to icosahedral capsid maturation. Nat Commun 8:14310PubMedPubMedCentralGoogle Scholar
  54. 54.
    Molineux IJ, Panja D (2013) Popping the cork: mechanisms of phage genome ejection. Nat Rev Microbiol 11:194–204PubMedGoogle Scholar
  55. 55.
    Jeembaeva M, Jonsson B, Castelnovo M, Evilevitch A (2010) DNA heats up: energetics of genome ejection from phage revealed by isothermal titration calorimetry. J Mol Biol 395:1079–1087PubMedGoogle Scholar
  56. 56.
    Mao H, Saha M, Reyes-Aldrete E, Sherman MB, Woodson M, Atz R, Grimes S, Jardine PJ, Morais MC (2016) Structural and molecular basis for coordination in a viral DNA packaging motor. Cell Rep 14:2017–2029PubMedPubMedCentralGoogle Scholar
  57. 57.
    Simpson AA, Tao Y, Leiman PG, Badasso MO, He Y, Jardine PJ, Olson NH, Morais MC, Grimes S, Anderson DL et al (2000) Structure of the bacteriophage phi29 DNA packaging motor. Nature 408:745–750PubMedPubMedCentralGoogle Scholar
  58. 58.
    Cardone G, Winkler DC, Trus BL, Cheng N, Heuser JE, Newcomb WW, Brown JC, Steven AC (2007) Visualization of the herpes simplex virus portal in situ by cryo-electron tomography. Virology 361:426–434Google Scholar
  59. 59.
    Newcomb WW, Juhas RM, Thomsen DR, Homa FL, Burch AD, Weller SK, Brown JC (2001) The UL6 gene product forms the portal for entry of DNA into the herpes simplex virus capsid. J Virol 75:10923–10932PubMedPubMedCentralGoogle Scholar
  60. 60.
    Bamford D, Mindich L (1982) Structure of the lipid-containing bacteriophage PRD1: disruption of wild-type and nonsense mutant phage particles with guanidine hydrochloride. J Virol 44:1031–1038PubMedPubMedCentralGoogle Scholar
  61. 61.
    Grahn AM, Daugelavicius R, Bamford DH (2002a) Sequential model of phage PRD1 DNA delivery: active involvement of the viral membrane. Mol Microbiol 46:1199–1209PubMedGoogle Scholar
  62. 62.
    Grahn AM, Daugelavicius R, Bamford DH (2002b) The small viral membrane-associated protein P32 is involved in bacteriophage PRD1 DNA entry. J Virol 76:4866–4872PubMedPubMedCentralGoogle Scholar
  63. 63.
    Strömsten NJ, Bamford DH, Bamford JK (2005) In vitro DNA packaging of PRD1: a common mechanism for internal-membrane viruses. J Mol Biol 348:617–629PubMedGoogle Scholar
  64. 64.
    Martin-Gonzalez N, Ortega-Esteban A, Moreno-Madrid F, Llauro A, Hernando-Perez M, de Pablo PJ (2018) Atomic force microscopy of protein shells: virus capsids and beyond. Methods Mol Biol 1665:281–296PubMedGoogle Scholar
  65. 65.
    Llauro A, Schwarz B, Koliyatt R, de Pablo PJ, Douglas T (2016) Tuning viral capsid nanoparticle stability with symmetrical morphogenesis. ACS Nano 10:8465–8473Google Scholar
  66. 66.
    Azinas S, Bano F, Torca I, Bamford DH, Schwartz GA, Esnaola J, Oksanen HM, Richter RP, Abrescia NG (2018) Membrane-containing virus particle exhibits mechanics of a composite material for genome protection. Nanoscale 10:7769–7779PubMedPubMedCentralGoogle Scholar
  67. 67.
    Bamford DH, Ravantti JJ, Rönnholm G, Laurinavicius S, Kukkaro P, Dyall-Smith M, Somerharju P, Kalkkinen N, Bamford JK (2005) Constituents of SH1, a novel lipid-containing virus infecting the halophilic euryarchaeon Haloarcula hispanica. J Virol 79:9097–9107PubMedPubMedCentralGoogle Scholar
  68. 68.
    Aalto AP, Bitto D, Ravantti JJ, Bamford DH, Huiskonen JT, Oksanen HM (2012) Snapshot of virus evolution in hypersaline environments from the characterization of a membrane-containing Salisaeta icosahedral phage 1. Proc Natl Acad Sci USA 109:7079–7084PubMedGoogle Scholar
  69. 69.
    Demina TA, Pietilä MK, Svirskaite J, Ravantti JJ, Atanasova NS, Bamford DH, Oksanen HM (2016) Archaeal Haloarcula californiae icosahedral virus 1 highlights conserved elements in icosahedral membrane-containing DNA viruses from extreme environments. MBio 7:e00699–e00616PubMedPubMedCentralGoogle Scholar
  70. 70.
    Jaakkola ST, Penttinen RK, Vilen ST, Jalasvuori M, Rönnholm G, Bamford JK, Bamford DH, Oksanen HM (2012) Closely related archaeal Haloarcula hispanica icosahedral viruses HHIV-2 and SH1 have nonhomologous genes encoding host recognition functions. J Virol 86:4734–4742PubMedPubMedCentralGoogle Scholar
  71. 71.
    Jaatinen ST, Happonen LJ, Laurinmäki P, Butcher SJ, Bamford DH (2008) Biochemical and structural characterisation of membrane-containing icosahedral dsDNA bacteriophages infecting thermophilic Thermus thermophilus. Virology 379:10–19PubMedGoogle Scholar
  72. 72.
    Porter K, Tang S-L, Chen C-P, Chiang P-W, Hong M-J, Dyall-Smith M (2013) PH1: an archaeovirus of Haloarcula hispanica related to SH1 and HHIV-2. Archaea 2013:456318PubMedPubMedCentralGoogle Scholar
  73. 73.
    Zhang Z, Liu Y, Wang S, Yang D, Cheng Y, Hu J, Chen J, Mei Y, Shen P, Bamford DH et al (2012) Temperate membrane-containing halophilic archaeal virus SNJ1 has a circular dsDNA genome identical to that of plasmid pHH205. Virology 434:233–241PubMedGoogle Scholar
  74. 74.
    Pawlowski A, Rissanen I, Bamford JK, Krupovic M, Jalasvuori M (2014) Gammasphaerolipovirus, a newly proposed bacteriophage genus, unifies viruses of halophilic archaea and thermophilic bacteria within the novel family Sphaerolipoviridae. Arch Virol 159:1541–1554PubMedGoogle Scholar
  75. 75.
    Demina TA, Pietilä MK, Svirskaite J, Ravantti JJ, Atanasova NS, Bamford DH, Oksanen HM (2017) HCIV-1 and other tailless icosahedral internal membrane-containing viruses of the family Sphaerolipoviridae. Viruses 9:32PubMedCentralGoogle Scholar
  76. 76.
    Rissanen I, Grimes JM, Pawlowski A, Mantynen S, Harlos K, Bamford JK, Stuart DI (2013) Bacteriophage P23-77 capsid protein structures reveal the archetype of an ancient branch from a major virus lineage. Structure 21:718–726PubMedPubMedCentralGoogle Scholar
  77. 77.
    Gil-Carton D, Jaakkola ST, Charro D, Peralta B, Castaño-Díez D, Oksanen HM, Bamford DH, Abrescia NG (2015) Insight into the assembly of viruses with vertical single beta-barrel major capsid proteins. Structure 23:1866–1877PubMedGoogle Scholar
  78. 78.
    Jäälinoja HT, Roine E, Laurinmäki P, Kivelä HM, Bamford DH, Butcher SJ (2008) Structure and host-cell interaction of SH1, a membrane-containing, halophilic euryarchaeal virus. Proc Natl Acad Sci USA 105:8008–8013PubMedGoogle Scholar
  79. 79.
    Santos-Pérez I, Charro D, Gil-Carton D, Azkargorta M, Elortza F, Bamford DH, Oksanen HM, Abrescia NG (2019) Structural basis for assembly of vertical single β-barrel viruses. Nat Commun 10:1184PubMedPubMedCentralGoogle Scholar
  80. 80.
    De Colibus L, Roine E, Walter TS, Ilca SL, Wang X, Wang N, Roseman AM, Bamford D, Huiskonen JT, Stuart DI (2019) Assembly of complex viruses exemplified by a halophilic euryarchaeal virus. Nat Commun 10:1456PubMedPubMedCentralGoogle Scholar
  81. 81.
    Chibani-Chennoufi S, Bruttin A, Dillmann ML, Brussow H (2004) Phage-host interaction: an ecological perspective. J Bacteriol 186:3677–3686PubMedPubMedCentralGoogle Scholar
  82. 82.
    Kauffman KM, Hussain FA, Yang J, Arevalo P, Brown JM, Chang WK, VanInsberghe D, Elsherbini J, Sharma RS, Cutler MB et al (2018) A major lineage of non-tailed dsDNA viruses as unrecognized killers of marine bacteria. Nature 554:118–122PubMedGoogle Scholar
  83. 83.
    Laanto E, Mantynen S, De Colibus L, Marjakangas J, Gillum A, Stuart DI, Ravantti JJ, Huiskonen JT, Sundberg LR (2017) Virus found in a boreal lake links ssDNA and dsDNA viruses. Proc Natl Acad Sci U S A 114 (31):8378–8383. Google Scholar
  84. 84.
    Gill JJ, Wang B, Sestak E, Young R, Chu KH (2018) Characterization of a novel tectivirus phage Toil and its potential as an agent for biolipid extraction. Sci Rep 8:1062PubMedPubMedCentralGoogle Scholar
  85. 85.
    Philippe C, Krupovic M, Jaomanjaka F, Claisse O, Petrel M, le Marrec C (2018) Bacteriophage GC1, a novel tectivirus infecting Gluconobacter cerinus, an acetic acid bacterium associated with wine-making. Viruses 10:39PubMedCentralGoogle Scholar
  86. 86.
    Fisher MB, Love DC, Schuech R, Nelson KL (2011) Simulated sunlight action spectra for inactivation of MS2 and PRD1 bacteriophages in clear water. Environ Sci Technol 45:9249–9255PubMedGoogle Scholar
  87. 87.
    Harvey RW, Ryan JN (2004) Use of PRD1 bacteriophage in groundwater viral transport, inactivation, and attachment studies. FEMS Microbiol Ecol 49:3–16PubMedGoogle Scholar
  88. 88.
    Gallandat K, Lantagne D (2017) Selection of a Biosafety Level 1 (BSL-1) surrogate to evaluate surface disinfection efficacy in Ebola outbreaks: comparison of four bacteriophages. PLoS One 12:e0177943PubMedPubMedCentralGoogle Scholar
  89. 89.
    Turgeon N, Toulouse MJ, Martel B, Moineau S, Duchaine C (2014) Comparison of five bacteriophages as models for viral aerosol studies. Appl Environ Microbiol 80:4242–4250PubMedPubMedCentralGoogle Scholar
  90. 90.
    Scarpellini E, Ianiro G, Attili F, Bassanelli C, De Santis A, Gasbarrini A (2015) The human gut microbiota and virome: potential therapeutic implications. Dig Liver Dis 47:1007–1012PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences Research ProgrammeUniversity of HelsinkiHelsinkiFinland
  2. 2.Molecular Recognition and Host-Pathogen Interactions ProgrammeCIC bioGUNE, CIBERehdDerioSpain
  3. 3.IKERBASQUE, Basque Foundation for ScienceBilbaoSpain

Personalised recommendations