Advertisement

Single Virion Tracking Microscopy for the Study of Virus Entry Processes in Live Cells and Biomimetic Platforms

  • Lakshmi NathanEmail author
  • Susan DanielEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1215)

Abstract

The most widely-used assays for studying viral entry, including infectivity, cofloatation, and cell-cell fusion assays, yield functional information but provide low resolution of individual entry steps. Structural characterization provides high-resolution conformational information, but on its own is unable to address the functional significance of these conformations. Single virion tracking microscopy techniques provide more detail on the intermediate entry steps than infection assays and more functional information than structural methods, bridging the gap between these methods. In addition, single virion approaches also provide dynamic information about the kinetics of entry processes. This chapter reviews single virion tracking techniques and describes how they can be applied to study specific virus entry steps. These techniques provide information complementary to traditional ensemble approaches. Single virion techniques may either probe virion behavior in live cells or in biomimetic platforms. Synthesizing information from ensemble, structural, and single virion techniques ultimately yields a more complete understanding of the viral entry process than can be achieved by any single method alone.

Keywords

Fluorescence microscopy Virion tracking Lipid bilayer Virus entry Single virus particle Enveloped virus Non-enveloped virus Infection Membrane fusion Imaging Live cells Biomimetics Tracking 

References

  1. 1.
    Marsh M, Helenius A (2006) Virus entry: open sesame. Cell 124:729–740CrossRefGoogle Scholar
  2. 2.
    Flint SJ, Enquist LW, Racaniello VR, Skalka AM (2009) Principles of virology, volume I: molecular biology, 3rd edn. ASM Press, Washington DCGoogle Scholar
  3. 3.
    Suomalainen M, Greber UF (2013) Uncoating of non-enveloped viruses. Curr Opin Virol 3:27–33.  https://doi.org/10.1016/j.coviro.2012.12.004 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    White JM, Whittaker GR (2016) Fusion of enveloped viruses in endosomes. Traffic 17:593–614CrossRefGoogle Scholar
  5. 5.
    White JM, Delos SE, Brecher M, Schornberg K (2008) Structures and mechanisms of viral membrane fusion proteins: multiple variations on a common theme. Crit Rev Biochem Mol Biol 43:189–219.  https://doi.org/10.1080/10409230802058320 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Matsuyama S, Ujike M, Morikawa S et al (2005) Protease-mediated enhancement of severe acute respiratory syndrome coronavirus infection. Proc Natl Acad Sci USA 102:12543–12547.  https://doi.org/10.1073/pnas.0503203102 CrossRefPubMedGoogle Scholar
  7. 7.
    Yamauchi Y, Greber UF (2016) Principles of virus uncoating: cues and the snooker ball. Traffic 17:569–592.  https://doi.org/10.1111/tra.12387 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Harrison SC (2015) Viral membrane fusion. Virology 479–480:498–507.  https://doi.org/10.1016/J.VIROL.2015.03.043 CrossRefPubMedGoogle Scholar
  9. 9.
    Ma Y, He Z, Tan T et al (2016) Real-time imaging of single HIV-1 disassembly with multicolor viral particles. ACS Nano 10:6273–6282.  https://doi.org/10.1021/acsnano.6b02462 CrossRefPubMedGoogle Scholar
  10. 10.
    Lakadamyali M, Rust MJ, Babcock HP, Zhuang X (2003) Visualizing infection of individual influenza viruses. Proc Natl Acad Sci USA 100:9280–9285.  https://doi.org/10.1073/pnas.0832269100 CrossRefPubMedGoogle Scholar
  11. 11.
    Spence JS, Krause TB, Mittler E et al (2016) Direct visualization of Ebola virus fusion triggering in the endocytic pathway. MBio 7:e01857–e01815.  https://doi.org/10.1128/mBio.01857-15 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Costello DA, Lee DW, Drewes J et al (2012) Influenza virus-membrane fusion triggered by proton uncaging for single particle studies of fusion kinetics. Anal Chem 84:8480–8489.  https://doi.org/10.1021/ac3006473 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Costello DA, Millet JK, Hsia CY et al (2013b) Single particle assay of coronavirus membrane fusion with proteinaceous receptor-embedded supported bilayers. Biomaterials 34:7895–7904.  https://doi.org/10.1016/j.biomaterials.2013.06.034 CrossRefPubMedGoogle Scholar
  14. 14.
    Ewers H, Schelhaas M (2012) Analysis of virus entry and cellular membrane dynamics by single particle tracking. Methods Enzymol 506:63–80.  https://doi.org/10.1016/B978-0-12-391856-7.00028-7 CrossRefPubMedGoogle Scholar
  15. 15.
    Floyd DL, Harrison SC, Van Oijen AM (2010) Analysis of kinetic intermediates in single-particle dwell-time distributions. Biophys J 99:360–366.  https://doi.org/10.1016/j.bpj.2010.04.049 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Helenius A, Kartenbeck J, Simons K, Fries E (1980) On the entry of Semliki forest virus into BHK-21 cells. J Cell Biol 84:404–420.  https://doi.org/10.1083/JCB.84.2.404 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Seisenberger G, Ried MU, Endress T et al (2001) Real-time single-molecule imaging of the infection pathway of an adeno-associated virus. Science 294:1929–1932.  https://doi.org/10.1126/science.1064103 CrossRefPubMedGoogle Scholar
  18. 18.
    Suomalainen M, Nakano MY, Keller S et al (1999) Microtubule-dependent plus- and minus end-directed motilities are competing processes for nuclear targeting of adenovirus. J Cell Biol 144:657–672.  https://doi.org/10.1083/JCB.144.4.657 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Michalet X, Siegmund OHW, Vallerga JV et al (2007) Detectors for single-molecule fluorescence imaging and spectroscopy. J Mod Opt 54:239.  https://doi.org/10.1080/09500340600769067 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Otterstrom J, Van Oijen AM (2013) Visualization of membrane fusion, one particle at a time. Biochemistry 52:1654–1668.  https://doi.org/10.1021/bi301573w CrossRefPubMedGoogle Scholar
  21. 21.
    Shen H, Tauzin LJ, Baiyasi R et al (2017) Single particle tracking: from theory to biophysical applications. Chem Rev 117:7331–7376CrossRefGoogle Scholar
  22. 22.
    Brandenburg B, Zhuang X (2007) Virus trafficking—learning from single-virus tracking. Nat Rev Microbiol 5:197–208.  https://doi.org/10.1038/nrmicro1615 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Wang I-H, Burckhardt C, Yakimovich A, Greber U (2018) Imaging, tracking and computational analyses of virus entry and egress with the cytoskeleton. Viruses 10:166.  https://doi.org/10.3390/v10040166 CrossRefPubMedCentralGoogle Scholar
  24. 24.
    Axelrod D (2003) Total internal reflection fluorescence microscopy in cell biology. Methods Enzymol 361:1–33.  https://doi.org/10.1016/S0076-6879(03)61003-7 CrossRefPubMedGoogle Scholar
  25. 25.
    Mattheyses AL, Simon SM, Rappoport JZ (2010) Imaging with total internal reflection fluorescence microscopy for the cell biologist. J Cell Sci 123:3621–3628.  https://doi.org/10.1242/jcs.056218 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Icha J, Weber M, Waters JC, Norden C (2017) Phototoxicity in live fluorescence microscopy, and how to avoid it. BioEssays 39:1700003.  https://doi.org/10.1002/bies.201700003 CrossRefGoogle Scholar
  27. 27.
    Huang L-L, Xie H-Y (2014) Progress on the labeling and single-particle tracking technologies of viruses. Analyst 139:3336–3346.  https://doi.org/10.1039/C4AN00038B CrossRefPubMedGoogle Scholar
  28. 28.
    Liu S-L, Wang Z-G, Zhang Z-L, Pang D-W (2016) Tracking single viruses infecting their host cells using quantum dots. Chem Soc Rev 45:1211–1224.  https://doi.org/10.1039/C5CS00657K CrossRefPubMedGoogle Scholar
  29. 29.
    Sun E, He J, Zhuang X (2013) Live cell imaging of viral entry. Curr Opin Virol 3:34–43.  https://doi.org/10.1016/j.coviro.2013.01.005 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    McDonald D, Vodicka MA, Lucero G et al (2002) Visualization of the intracellular behavior of HIV in living cells. J Cell Biol 159:441–452.  https://doi.org/10.1083/jcb.200203150 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Charpilienne A, Nejmeddine M, Berois M et al (2001) Individual rotavirus-like particles containing 120 molecules of fluorescent protein are visible in living cells. J Biol Chem 276:29361–29367.  https://doi.org/10.1074/jbc.M101935200 CrossRefPubMedGoogle Scholar
  32. 32.
    Desai P, Person S (1998) Incorporation of the green fluorescent protein into the herpes simplex virus type 1 capsid. J Virol 72:7563–7568PubMedPubMedCentralGoogle Scholar
  33. 33.
    Floyd DL, Ragains JR, Skehel JJ et al (2008) Single-particle kinetics of influenza virus membrane fusion. Proc Natl Acad Sci USA 105:15382–15387.  https://doi.org/10.1073/pnas.0807771105 CrossRefPubMedGoogle Scholar
  34. 34.
    Wessels L, Elting MW, Scimeca D, Weninger K (2007) Rapid membrane fusion of individual virus particles with supported lipid bilayers. Biophys J 93:526–538.  https://doi.org/10.1529/biophysj.106.097485 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Padilla-Parra S, Matos PM, Kondo N et al (2012b) Quantitative imaging of endosome acidification and single retrovirus fusion with distinct pools of early endosomes. Proc Natl Acad Sci USA 109:17627–17632.  https://doi.org/10.1073/pnas.1211714109 CrossRefPubMedGoogle Scholar
  36. 36.
    Kukura P, Ewers H, Müller C et al (2009) High-speed nanoscopic tracking of the position and orientation of a single virus. Nat Methods 6:923–927.  https://doi.org/10.1038/nmeth.1395 CrossRefPubMedGoogle Scholar
  37. 37.
    Lee DW, Hsu H-L, Bacon KB, Daniel S (2016b) Image restoration and analysis of influenza virions binding to membrane receptors reveal adhesion-strengthening kinetics. PLoS One 11:e0163437.  https://doi.org/10.1371/journal.pone.0163437 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Carter BC, Shubeita GT, Gross SP (2005) Tracking single particles: a user-friendly quantitative evaluation. Phys Biol 2:60–72.  https://doi.org/10.1088/1478-3967/2/1/008 CrossRefPubMedGoogle Scholar
  39. 39.
    Meijering E, Dzyubachyk O, Smal I, van Cappellen WA (2009) Tracking in cell and developmental biology. Semin Cell Dev Biol 20:894–902CrossRefGoogle Scholar
  40. 40.
    Sbalzarini IF, Koumoutsakos P (2005) Feature point tracking and trajectory analysis for video imaging in cell biology. J Struct Biol 151:182–195.  https://doi.org/10.1016/j.jsb.2005.06.002 CrossRefPubMedGoogle Scholar
  41. 41.
    Ruthardt N, Lamb DC, Bräuchle C (2011) Single-particle tracking as a quantitative microscopy-based approach to unravel cell entry mechanisms of viruses and pharmaceutical nanoparticles. Mol Ther 19:1199–1211.  https://doi.org/10.1038/mt.2011.102 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Georgiou GN, Morrison IEG, Cherry RJ (1989) Digital fluorescence imaging of fusion of influenza virus with erythrocytes. FEBS Lett 250:487–492.  https://doi.org/10.1016/0014-5793(89)80782-3 CrossRefPubMedGoogle Scholar
  43. 43.
    Lowy RJ, Sarkar DP, Chen Y, Blumenthal R (1990) Observation of single influenza virus-cell fusion and measurement by fluorescence video microscopy. Proc Natl Acad Sci USA 87:1850–1854CrossRefGoogle Scholar
  44. 44.
    Niles WD, Cohen FS (1991a) Fusion of influenza virions with a planar lipid membrane detected by video fluorescence microscopy. J Gen Physiol 97:1101–1119.  https://doi.org/10.1085/JGP.97.6.1101 CrossRefPubMedGoogle Scholar
  45. 45.
    Niles WD, Cohen FS (1991b) The role of N-acetylneuraminic (sialic) acid in the pH dependence of influenza virion fusion with planar phospholipid membranes. J Gen Physiol 97:1121–1140.  https://doi.org/10.1085/JGP.97.6.1121 CrossRefPubMedGoogle Scholar
  46. 46.
    Sackmann E (1996) Supported membranes: scientific and practical applications. Science 271:43–48.  https://doi.org/10.1126/SCIENCE.271.5245.43 CrossRefPubMedGoogle Scholar
  47. 47.
    Tanaka M, Sackmann E (2005) Polymer-supported membranes as models of the cell surface. Nature 437:656–663.  https://doi.org/10.1038/nature04164 CrossRefPubMedGoogle Scholar
  48. 48.
    Castellana ET, Cremer PS (2006) Solid supported lipid bilayers: from biophysical studies to sensor design. Surf Sci Rep 61:429–444.  https://doi.org/10.1016/J.SURFREP.2006.06.001 CrossRefGoogle Scholar
  49. 49.
    Bally M, Rydell GE, Zahn R et al (2012) Norovirus GII.4 virus-like particles recognize galactosylceramides in domains of planar supported lipid bilayers. Angew Chemie Int Ed 51:12020–12024.  https://doi.org/10.1002/anie.201205972 CrossRefGoogle Scholar
  50. 50.
    van der Borg G, Braddock S, Blijleven JS et al (2018) Single-particle fusion of influenza viruses reveals complex interactions with target membranes. J Phys Condens Matter 30:204005.  https://doi.org/10.1088/1361-648X/aabc21 CrossRefPubMedGoogle Scholar
  51. 51.
    Pace H, Simonsson Nyström L, Gunnarsson A et al (2015) Preserved transmembrane protein mobility in polymer-supported lipid bilayers derived from cell membranes. Anal Chem 87:9194–9203.  https://doi.org/10.1021/acs.analchem.5b01449 CrossRefPubMedGoogle Scholar
  52. 52.
    Richards MJ, Hsia C-Y, Singh RR et al (2016) Membrane protein mobility and orientation preserved in supported bilayers created directly from cell plasma membrane blebs. Langmuir 32:2963–2974.  https://doi.org/10.1021/acs.langmuir.5b03415 CrossRefPubMedGoogle Scholar
  53. 53.
    Costello DA, Daniel S (2015) Single particle tracking assay to study coronavirus membrane fusion. Methods Mol Biol 1282:183–194.  https://doi.org/10.1007/978-1-4939-2438-7_16 CrossRefPubMedGoogle Scholar
  54. 54.
    Liu H-Y, Chen W-L, Ober CK, Daniel S (2017) Biologically complex planar cell plasma membranes supported on polyelectrolyte cushions enhance transmembrane protein mobility and retain native orientation. Langmuir.  https://doi.org/10.1021/acs.langmuir.7b02945 CrossRefGoogle Scholar
  55. 55.
    Bayerl TM, Bloom M (1990) Physical properties of single phospholipid bilayers adsorbed to micro glass beads. A new vesicular model system studied by 2H-nuclear magnetic resonance. Biophys J 58:357–362.  https://doi.org/10.1016/S0006-3495(90)82382-1 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Johnson SJ, Bayerl TM, McDermott DC et al (1991) Structure of an adsorbed dimyristoylphosphatidylcholine bilayer measured with specular reflection of neutrons. Biophys J 59:289–294.  https://doi.org/10.1016/S0006-3495(91)82222-6 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Matos PM, Marin M, Ahn B et al (2013) Anionic lipids are required for vesicular stomatitis virus G protein-mediated single particle fusion with supported lipid bilayers. J Biol Chem 288:12416–12425.  https://doi.org/10.1074/jbc.M113.462028 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Hsia C-Y, Richards MJ, Daniel S (2015) A review of traditional and emerging methods to characterize lipid–protein interactions in biological membranes. Anal Methods 7:7076–7094.  https://doi.org/10.1039/C5AY00599J CrossRefGoogle Scholar
  59. 59.
    Costello DA, Hsia CY, Millet JK et al (2013a) Membrane fusion-competent virus-like proteoliposomes and proteinaceous supported bilayers made directly from cell plasma membranes. Langmuir 29:6409–6419.  https://doi.org/10.1021/la400861u CrossRefPubMedGoogle Scholar
  60. 60.
    Hinterdorfer P, Baber G, Tamm LK (1994) Reconstitution of membrane fusion sites. J Biol Chem 269:20360–20368PubMedGoogle Scholar
  61. 61.
    Tatulian SA, Hinterdorfer ’ P, Baber G, Tamm LK (1995) Influenza hemagglutinin assumes a tilted conformation during membrane fusion as determined by attenuated total reflection FTIR spectroscopy. EMBO J 14:5514–5523CrossRefGoogle Scholar
  62. 62.
    Szklarczyk OM, González-Segredo N, Kukura P et al (2013) Receptor concentration and diffusivity control multivalent binding of Sv40 to membrane bilayers. PLoS Comput Biol 9:e1003310.  https://doi.org/10.1371/journal.pcbi.1003310 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Dale BM, McNerney GP, Thompson DL et al (2011) Cell-to-cell transfer of HIV-1 via virological synapses leads to endosomal virion maturation that activates viral membrane fusion. Cell Host Microbe 10:551–562.  https://doi.org/10.1016/J.CHOM.2011.10.015 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Felts RL, Narayan K, Estes JD et al (2010) 3D visualization of HIV transfer at the virological synapse between dendritic cells and T cells. Proc Natl Acad Sci USA 107:13336–13341.  https://doi.org/10.1073/pnas.1003040107 CrossRefPubMedGoogle Scholar
  65. 65.
    Hubner W, McNerney GP, Chen P et al (2009) Quantitative 3D video microscopy of HIV transfer across T cell virological synapses. Science 323:1743–1747.  https://doi.org/10.1126/science.1167525 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Cudmore S, Cossart P, Griffiths G, Way M (1995) Actin-based motility of vaccinia virus. Nature 378:636–638.  https://doi.org/10.1038/378636a0 CrossRefPubMedGoogle Scholar
  67. 67.
    Granstedt AE, Brunton BW, Enquist LW (2013) Imaging the transport dynamics of single alphaherpesvirus particles in intact peripheral nervous system explants from infected mice. MBio 4:e00358–e00313.  https://doi.org/10.1128/mBio.00358-13 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Yang X, Forier K, Steukers L et al (2012) Immobilization of pseudorabies virus in porcine tracheal respiratory mucus revealed by single particle tracking. PLoS One 7:e51054.  https://doi.org/10.1371/journal.pone.0051054 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Lehmann MJ, Sherer NM, Marks CB et al (2005) Actin- and myosin-driven movement of viruses along filopodia precedes their entry into cells. J Cell Biol 170:317–325.  https://doi.org/10.1083/jcb.200503059 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    van der Schaar HM, Rust MJ, Chen C et al (2008) Dissecting the cell entry pathway of dengue virus by single-particle tracking in living cells. PLoS Pathog 4:e1000244.  https://doi.org/10.1371/journal.ppat.1000244 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Pelkmans L, Püntener D, Helenius A (2002) Local actin polymerization and dynamin recruitment in SV40-induced internalization of caveolae. Science 296:535–539.  https://doi.org/10.1126/science.1069784 CrossRefPubMedGoogle Scholar
  72. 72.
    Ewers H, Smith AE, Sbalzarini IF et al (2005) Single-particle tracking of murine polyoma virus-like particles on live cells and artificial membranes. Proc Natl Acad Sci 102:15110–15115.  https://doi.org/10.1073/pnas.0504407102 CrossRefPubMedGoogle Scholar
  73. 73.
    Mercer J, Helenius A (2008) Vaccinia virus uses macropinocytosis and apoptotic mimicry to enter host cells. Science 320:531–535.  https://doi.org/10.1126/science.1155164 CrossRefGoogle Scholar
  74. 74.
    Xu H, Hao X, Wang S et al (2015) Real-time imaging of rabies virus entry into living vero cells. Sci Rep 5:11753.  https://doi.org/10.1038/srep11753 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Burckhardt CJ, Suomalainen M, Schoenenberger P et al (2011a) Drifting motions of the adenovirus receptor CAR and immobile integrins initiate virus uncoating and membrane lytic protein exposure. Cell Host Microbe 10:105–117.  https://doi.org/10.1016/J.CHOM.2011.07.006 CrossRefPubMedGoogle Scholar
  76. 76.
    Helmuth JA, Burckhardt CJ, Koumoutsakos P et al (2007) A novel supervised trajectory segmentation algorithm identifies distinct types of human adenovirus motion in host cells. J Struct Biol 159:347–358.  https://doi.org/10.1016/J.JSB.2007.04.003 CrossRefPubMedGoogle Scholar
  77. 77.
    Coyne CB, Bergelson JM (2006) Virus-induced Abl and Fyn kinase signals permit coxsackievirus entry through epithelial tight junctions. Cell 124:119–131.  https://doi.org/10.1016/j.cell.2005.10.035 CrossRefPubMedGoogle Scholar
  78. 78.
    Rust MJ, Lakadamyali M, Zhang F, Zhuang X (2004) Assembly of endocytic machinery around individual influenza viruses during viral entry. Nat Struct Mol Biol 11:567–573.  https://doi.org/10.1038/nsmb769 CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Peerboom N, Block S, Altgärde N et al (2017) Binding kinetics and lateral mobility of HSV-1 on end-grafted sulfated glycosaminoglycans. Biophys J 113:1223–1234.  https://doi.org/10.1016/J.BPJ.2017.06.028 CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Kunze A, Bally M, Höök F, Larson G (2013) Equilibrium-fluctuation-analysis of single liposome binding events reveals how cholesterol and Ca2+ modulate glycosphingolipid trans-interactions. Sci Rep 3:1452.  https://doi.org/10.1038/srep01452 CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Bally M, Gunnarsson A, Svensson L et al (2011) Interaction of single viruslike particles with vesicles containing glycosphingolipids. Phys Rev Lett 107:188103.  https://doi.org/10.1103/PhysRevLett.107.188103 CrossRefPubMedGoogle Scholar
  82. 82.
    Bally M, Graule M, Parra F et al (2013) A virus biosensor with single virus-particle sensitivity based on fluorescent vesicle labels and equilibrium fluctuation analysis. Biointerphases 8:4.  https://doi.org/10.1186/1559-4106-8-4 CrossRefPubMedGoogle Scholar
  83. 83.
    Nasir W, Bally M, Zhdanov VP et al (2015) Interaction of virus-like particles with vesicles containing glycolipids: kinetics of detachment. J Phys Chem B 119:11466–11472.  https://doi.org/10.1021/acs.jpcb.5b04160 CrossRefPubMedGoogle Scholar
  84. 84.
    Block S, Zhdanov VP, Höök F (2016) Quantification of multivalent interactions by tracking single biological nanoparticle mobility on a lipid membrane. Nano Lett 16:4382–4390.  https://doi.org/10.1021/acs.nanolett.6b01511 CrossRefPubMedGoogle Scholar
  85. 85.
    Lee D, Allison A, Bacon K et al (2016a) Single-particle tracking shows that a point mutation in the carnivore parvovirus capsid switches binding between host-specific transferrin receptors. J Virol 90:4849–4853.  https://doi.org/10.1128/JVI.03204-15 CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Yang S-T, Kiessling V, Simmons JA et al (2015) HIV gp41–mediated membrane fusion occurs at edges of cholesterol-rich lipid domains. Nat Chem Biol 11:424–431.  https://doi.org/10.1038/nchembio.1800 CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Yang S-T, Kreutzberger AJB, Kiessling V et al (2017) HIV virions sense plasma membrane heterogeneity for cell entry. Sci Adv 3:e1700338.  https://doi.org/10.1126/sciadv.1700338 CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Conboy JC, McReynolds KD, Gervay-Hague J, Saavedra SS (2000) Gp120 binds cooperatively to several biologically relevant glycosphingolipids: quantitative measurements at equilibrium by total internal reflection fluorescence microscopy. Angew Chemie 39:2882–2884.  https://doi.org/10.1002/1521-3773(20000818)39:16<2882::AID-ANIE2882>3.0.CO;2-M CrossRefGoogle Scholar
  89. 89.
    Conboy JC, McReynolds KD, Gervay-Hague J, Saavedra SS (2002) Quantitative measurements of recombinant HIV surface glycoprotein 120 binding to several glycosphingolipids expressed in planar supported lipid bilayers. J Am Chem Soc 124:968–977.  https://doi.org/10.1021/ja011225s CrossRefPubMedGoogle Scholar
  90. 90.
    Myszka DG, Sweet RW, Hensley P et al (2000) Energetics of the HIV gp120-CD4 binding reaction. Proc Natl Acad Sci USA 97:9026–9031.  https://doi.org/10.1073/PNAS.97.16.9026 CrossRefPubMedGoogle Scholar
  91. 91.
    Kielian MC, Helenius A (1984) Role of cholesterol in fusion of Semliki forest virus with membranes. J Virol 52:281–283PubMedPubMedCentralGoogle Scholar
  92. 92.
    Wahlberg JM, Bron R, Wilschut J, Garoff H (1992) Membrane fusion of Semliki forest virus involves homotrimers of the fusion protein. J Virol 66:7309–7318PubMedPubMedCentralGoogle Scholar
  93. 93.
    Stevens J, Blixt O, Tumpey TM et al (2006) Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science 312:404–410.  https://doi.org/10.1126/science.1124513 CrossRefPubMedGoogle Scholar
  94. 94.
    Hidari KIPJ, Shimada S, Suzuki Y, Suzuki T (2007) Binding kinetics of influenza viruses to sialic acid-containing carbohydrates. Glycoconj J 24:583–590.  https://doi.org/10.1007/s10719-007-9055-y CrossRefPubMedGoogle Scholar
  95. 95.
    Rydell GE, Dahlin AB, Hook F, Larson G (2009) QCM-D studies of human norovirus VLPs binding to glycosphingolipids in supported lipid bilayers reveal strain-specific characteristics. Glycobiology 19:1176–1184.  https://doi.org/10.1093/glycob/cwp103 CrossRefPubMedGoogle Scholar
  96. 96.
    Banerjee S, Maurya S, Roy R (2018) Single-molecule fluorescence imaging: generating insights into molecular interactions in virology. J Biosci:1–22.  https://doi.org/10.1007/s12038-018-9769-y CrossRefGoogle Scholar
  97. 97.
    Ehrlich M, Boll W, Van Oijen A et al (2004) Endocytosis by random initiation and stabilization of clathrin-coated pits. Cell 118:591–605.  https://doi.org/10.1016/j.cell.2004.08.017 CrossRefPubMedGoogle Scholar
  98. 98.
    Pietiäinen V, Marjomäki V, Upla P et al (2004) Echovirus 1 endocytosis into caveosomes requires lipid rafts, dynamin II, and signaling events. Mol Biol Cell 15:4911–4925.  https://doi.org/10.1091/mbc.E04-01-0070 CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Weir DL, Laing ED, Smith IL et al (2014) Host cell virus entry mediated by Australian bat lyssavirus G envelope glycoprotein occurs through a clathrin-mediated endocytic pathway that requires actin and Rab5. Virol J 11:40.  https://doi.org/10.1186/1743-422X-11-40 CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Li Q, Li W, Yin W et al (2017) Single-particle tracking of human immunodeficiency virus type 1 productive entry into human primary macrophages. ACS Nano 11:3890–3903.  https://doi.org/10.1021/acsnano.7b00275 CrossRefPubMedGoogle Scholar
  101. 101.
    Liu H, Liu Y, Liu S et al (2011) Clathrin-mediated endocytosis in living host cells visualized through quantum dot labeling of infectious hematopoietic necrosis virus. J Virol 85:6252–6262.  https://doi.org/10.1128/JVI.00109-11 CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Liebl D, Difato F, Horníková L et al (2006) Mouse polyomavirus enters early endosomes, requires their acidic pH for productive infection, and meets transferrin cargo in Rab11-positive endosomes. J Virol 80:4610–4622.  https://doi.org/10.1128/JVI.80.9.4610-4622.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Burckhardt CJ, Suomalainen M, Schoenenberger P et al (2011b) Drifting motions of the adenovirus receptor CAR and immobile integrins initiate virus uncoating and membrane lytic protein exposure. Cell Host Microbe 10:105–117.  https://doi.org/10.1016/J.CHOM.2011.07.006 CrossRefPubMedGoogle Scholar
  104. 104.
    Luisoni S, Suomalainen M, Boucke K et al (2015) Co-option of membrane wounding enables virus penetration into cells. Cell Host Microbe 18:75–85.  https://doi.org/10.1016/j.chom.2015.06.006 CrossRefPubMedGoogle Scholar
  105. 105.
    Meier O, Boucke K, Hammer SV et al (2002) Adenovirus triggers macropinocytosis and endosomal leakage together with its clathrin-mediated uptake. J Cell Biol 158:1119–1131.  https://doi.org/10.1083/jcb.200112067 CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Nakano MY, Boucke K, Suomalainen M et al (2000) The first step of adenovirus type 2 disassembly occurs at the cell surface, independently of endocytosis and escape to the cytosol. J Virol 74:7085–7095CrossRefGoogle Scholar
  107. 107.
    Damm E-M, Pelkmans L, Kartenbeck J et al (2005) Clathrin- and caveolin-1–independent endocytosis. J Cell Biol 168:477–488.  https://doi.org/10.1083/jcb.200407113 CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Lakadamyali M, Rust MJ, Zhuang X (2006) Ligands for clathrin-mediated endocytosis are differentially sorted into distinct populations of early endosomes. Cell 124:997–1009.  https://doi.org/10.1016/j.cell.2005.12.038 CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Elphick GF, Querbes W, Jordan JA et al (2004) The human polyomavirus, JCV, uses serotonin receptors to infect cells. Science 306:1380–1383.  https://doi.org/10.1126/science.1103492 CrossRefPubMedGoogle Scholar
  110. 110.
    Iyengar S, Hildreth JE, Schwartz DH (1998) Actin-dependent receptor colocalization required for human immunodeficiency virus entry into host cells. J Virol 72:5251–5255PubMedPubMedCentralGoogle Scholar
  111. 111.
    Sieczkarski SB, Brown HA, Whittaker GR (2003) Role of protein kinase C betaII in influenza virus entry via late endosomes. J Virol 77:460–469.  https://doi.org/10.1128/JVI.77.1.460-469.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Nicola AV, Straus SE (2004) Cellular and viral requirements for rapid endocytic entry of herpes simplex virus. J Virol 78:7508–7517.  https://doi.org/10.1128/JVI.78.14.7508-7517.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Vonderheit A, Helenius A (2005) Rab7 associates with early endosomes to mediate sorting and transport of semliki forest virus to late endosomes. PLoS Biol 3:e233.  https://doi.org/10.1371/journal.pbio.0030233 CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Georgi A, Mottola-Hartshornt C, Warner A et al (1990) Detection of individual fluorescently labeled reovirions in living cells. Microbiology 87:6579–6583Google Scholar
  115. 115.
    Xiao P-J, Samulski RJ (2012) Cytoplasmic trafficking, endosomal escape, and perinuclear accumulation of adeno-associated virus type 2 particles are facilitated by microtubule network. J Virol 86:10462–10473.  https://doi.org/10.1128/JVI.00935-12 CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Arhel N, Genovesio A, Kim K-A et al (2006) Quantitative four-dimensional tracking of cytoplasmic and nuclear HIV-1 complexes. Nat Methods 3:817–824.  https://doi.org/10.1038/nmeth928 CrossRefPubMedGoogle Scholar
  117. 117.
    Vaughan JC, Brandenburg B, Hogle JM, Zhuang X (2009) Rapid actin-dependent viral motility in live cells. Biophys J 97:1647–1656.  https://doi.org/10.1016/j.bpj.2009.07.011 CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Bremner KH, Scherer J, Yi J et al (2009) Adenovirus transport via direct interaction of cytoplasmic dynein with the viral capsid hexon subunit. Cell Host Microbe 6:523–535.  https://doi.org/10.1016/J.CHOM.2009.11.006 CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Wang I-H, Burckhardt CJ, Yakimovich A et al (2017) The nuclear export factor CRM1 controls juxta-nuclear microtubule-dependent virus transport. J Cell Sci 130:2185–2195.  https://doi.org/10.1242/jcs.203794 CrossRefPubMedGoogle Scholar
  120. 120.
    Jun S, Ke D, Debiec K et al (2011) Direct visualization of HIV-1 with correlative live-cell microscopy and cryo-electron tomography. Structure 19:1573–1581.  https://doi.org/10.1016/J.STR.2011.09.006 CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Chen J, Grunwald D, Sardo L et al (2014) Cytoplasmic HIV-1 RNA is mainly transported by diffusion in the presence or absence of gag protein. Proc Natl Acad Sci USA 111:E5205–E5213.  https://doi.org/10.1073/pnas.1413169111 CrossRefPubMedGoogle Scholar
  122. 122.
    Albanese A, Arosio D, Terreni M, Cereseto A (2008) HIV-1 pre-integration complexes selectively target decondensed chromatin in the nuclear periphery. PLoS One 3:e2413.  https://doi.org/10.1371/journal.pone.0002413 CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Babcock HP, Chen C, Zhuang X (2004) Using single-particle tracking to study nuclear trafficking of viral genes. Biophys J 87:2749–2758.  https://doi.org/10.1529/biophysj.104.042234 CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Antinone SE, Shubeita GT, Coller KE et al (2006) The Herpesvirus capsid surface protein, VP26, and the majority of the tegument proteins are dispensable for capsid transport toward the nucleus. J Virol 80:5494–5498.  https://doi.org/10.1128/JVI.00026-06 CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Luxton GWG, Haverlock S, Coller KE et al (2005) Targeting of herpesvirus capsid transport in axons is coupled to association with specific sets of tegument proteins. Proc Natl Acad Sci USA 102:5832–5837.  https://doi.org/10.1073/pnas.0500803102 CrossRefPubMedGoogle Scholar
  126. 126.
    Wolfstein A, Nagel C-H, Radtke K et al (2006) The inner tegument promotes herpes simplex virus capsid motility along microtubules in vitro. Traffic 7:227–237.  https://doi.org/10.1111/j.1600-0854.2005.00379.x CrossRefPubMedGoogle Scholar
  127. 127.
    Döhner K, Radtke K, Schmidt S, Sodeik B (2006) Eclipse phase of herpes simplex virus type 1 infection: efficient dynein-mediated capsid transport without the small capsid protein VP26. J Virol 80:8211–8224.  https://doi.org/10.1128/JVI.02528-05 CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Strunze S, Trotman LC, Boucke K, Greber UF (2005) Nuclear targeting of adenovirus type 2 requires CRM1-mediated nuclear export. Mol Biol Cell 16:2999–3009.  https://doi.org/10.1091/mbc.E05-02-0121 CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Miyauchi K, Kim Y, Latinovic O et al (2009) HIV enters cells via endocytosis and dynamin-dependent fusion with endosomes. Cell 137:433–444.  https://doi.org/10.1016/j.cell.2009.02.046 CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Markosyan RM, Cohen FS, Melikyan GB (2005) Time-resolved imaging of HIV-1 Env-mediated lipid and content mixing between a single virion and cell membrane. Mol Biol Cell 16:5502–5513.  https://doi.org/10.1091/mbc.e05-06-0496 CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Melikyan GB, Barnard RJO, Abrahamyan LG et al (2005) Imaging individual retroviral fusion events: from hemifusion to pore formation and growth. Proc Natl Acad Sci USA 102:8728–8733.  https://doi.org/10.1073/pnas.0501864102 CrossRefPubMedGoogle Scholar
  132. 132.
    Jha NK, Latinovic O, Martin E et al (2011) Imaging single retrovirus entry through alternative receptor isoforms and intermediates of virus-endosome fusion. PLoS Pathog 7:e1001260.  https://doi.org/10.1371/journal.ppat.1001260 CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Padilla-Parra S, Marin M, Kondo N, Melikyan GB (2012a) Synchronized retrovirus fusion in cells expressing alternative receptor isoforms releases the viral core into distinct sub-cellular compartments. PLoS Pathog 8:e1002694.  https://doi.org/10.1371/journal.ppat.1002694 CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Le Blanc I, Luyet P-P, Pons V et al (2005) Endosome-to-cytosol transport of viral nucleocapsids. Nat Cell Biol 7:653–664.  https://doi.org/10.1038/ncb1269 CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Blijleven JS, Boonstra S, Onck PR et al (2016) Mechanisms of influenza viral membrane fusion. Semin Cell Dev Biol 60:78–88CrossRefGoogle Scholar
  136. 136.
    Zhang Y, Dudko OK (2015) Statistical mechanics of viral entry. Phys Rev Lett 114:018104.  https://doi.org/10.1103/PhysRevLett.114.018104 CrossRefPubMedGoogle Scholar
  137. 137.
    Van Duijl-Richter MKS, Blijleven JS, van Oijen AM, Smit JM (2015) Chikungunya virus fusion properties elucidated by single-particle and bulk approaches. J Gen Virol 96:2122–2132.  https://doi.org/10.1099/vir.0.000144 CrossRefPubMedGoogle Scholar
  138. 138.
    Chao LH, Klein DE, Schmidt AG et al (2014) Sequential conformational rearrangements in flavivirus membrane fusion. elife 3:e04389.  https://doi.org/10.7554/eLife.04389 CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Kim IS, Jenni S, Stanifer ML et al (2017) Mechanism of membrane fusion induced by vesicular stomatitis virus G protein. Proc Natl Acad Sci USA 114:E28–E36.  https://doi.org/10.1073/pnas.1618883114 CrossRefPubMedGoogle Scholar
  140. 140.
    Costello DA, Whittaker GR, Daniel S (2015) Variations in pH sensitivity, acid stability, and fusogenicity of three influenza virus H3 subtypes. J Virol 89:350–360.  https://doi.org/10.1128/JVI.01927-14 CrossRefPubMedGoogle Scholar
  141. 141.
    Ivanovic T, Choi JL, Whelan SP et al (2013) Influenza-virus membrane fusion by cooperative fold-back of stochastically induced hemagglutinin intermediates. elife 2013:e00333.  https://doi.org/10.7554/eLife.00333 CrossRefGoogle Scholar
  142. 142.
    Ivanovic T, Harrison SC (2015) Distinct functional determinants of influenza hemagglutinin-mediated membrane fusion. elife 4:e11009.  https://doi.org/10.7554/eLife.11009 CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Lee DW, Thapar V, Clancy P, Daniel S (2014) Stochastic fusion simulations and experiments suggest passive and active roles of hemagglutinin during membrane fusion. Biophys J 106:843–854.  https://doi.org/10.1016/j.bpj.2013.12.048 CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Hsu H-L, Millet JK, Costello DA et al (2016) Viral fusion efficacy of specific H3N2 influenza virus reassortant combinations at single-particle level. Sci Rep 6:35537.  https://doi.org/10.1038/srep35537 CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Otterstrom JJ, Brandenburg B, Koldijk MH et al (2014) Relating influenza virus membrane fusion kinetics to stoichiometry of neutralizing antibodies at the single-particle level. Proc Natl Acad Sci USA 111:E5143–E5148.  https://doi.org/10.1073/pnas.1411755111 CrossRefPubMedGoogle Scholar
  146. 146.
    White J, Matlin K, Helenius A (1981) Cell fusion by Semliki forest, influenza, and vesicular stomatitis viruses. J Cell Biol 89:674–679.  https://doi.org/10.1083/JCB.89.3.674 CrossRefPubMedGoogle Scholar
  147. 147.
    Markosyan RM, Bates P, Cohen FS, Melikyan GB (2004) A study of low pH-induced refolding of Env of avian sarcoma and leukosis virus into a six-helix bundle. Biophys J 87:3291–3298.  https://doi.org/10.1529/biophysj.104.047696 CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Melikyan GB, Barnard RJO, Markosyan RM et al (2004) Low pH is required for avian sarcoma and leukosis virus Env-induced hemifusion and fusion pore formation but not for pore growth. J Virol 78:3753–3762.  https://doi.org/10.1128/JVI.78.7.3753-3762.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Blumenthal R, Sarkar DP, Durell S et al (1996) Dilation of the influenza hemagglutinin fusion pore revealed by the kinetics of individual cell-cell fusion events. J Cell Biol 135:63–71.  https://doi.org/10.1083/JCB.135.1.63 CrossRefPubMedGoogle Scholar
  150. 150.
    Spruce AE, Iwata A, White JM, Almers W (1989) Patch clamp studies of single cell-fusion events mediated by a viral fusion protein. Nature 342:555–558.  https://doi.org/10.1038/342555a0 CrossRefPubMedGoogle Scholar
  151. 151.
    Spruce AE, Iwata A, Almers W (1991) The first milliseconds of the pore formed by a fusogenic viral envelope protein during membrane fusion. Proc Natl Acad Sci USA 88:3623–3627.  https://doi.org/10.1073/pnas.88.9.3623 CrossRefPubMedGoogle Scholar
  152. 152.
    Cohen FS, Melikyan GB (1998) Methodologies in the study of cell-cell fusion. Methods 16:215–226.  https://doi.org/10.1006/meth.1998.0670 CrossRefPubMedGoogle Scholar
  153. 153.
    Struck DK, Hoekstra D, Pagano RE (1981) Use of resonance energy transfer to monitor membrane fusion. Biochemistry 20:4093–4099.  https://doi.org/10.1021/bi00517a023 CrossRefGoogle Scholar
  154. 154.
    Hoekstra D, De Boer T, Klappe K, Wilschut J (1984) Fluorescence method for measuring the kinetics of fusion between biological membranes. Biochemistry 23:5675–5681.  https://doi.org/10.1021/bi00319a002 CrossRefPubMedGoogle Scholar
  155. 155.
    Cavrois M, de Noronha C, Greene WC (2002) A sensitive and specific enzyme-based assay detecting HIV-1 virion fusion in primary T lymphocytes. Nat Biotechnol 20:1151–1154.  https://doi.org/10.1038/nbt745 CrossRefPubMedGoogle Scholar
  156. 156.
    de la Vega M, Marin M, Kondo N et al (2011) Inhibition of HIV-1 endocytosis allows lipid mixing at the plasma membrane, but not complete fusion. Retrovirology 8:99.  https://doi.org/10.1186/1742-4690-8-99 CrossRefPubMedPubMedCentralGoogle Scholar
  157. 157.
    Clague MJ, Schoch C, Blumenthal R (1991) Delay time for influenza virus hemagglutinin-induced membrane fusion depends on hemagglutinin surface density. J Virol 65:2402–2407PubMedPubMedCentralGoogle Scholar
  158. 158.
    Nieva JL, Bron R, Corver J, Wilschut J (1994) Membrane fusion of Semliki Forest virus requires sphingolipids in the target membrane. EMBO J 13:2797–2804CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Robert Frederick Smith School of Chemical and Biomolecular EngineeringCornell UniversityIthacaUSA

Personalised recommendations